Skip to main content

Assays to Examine Transmembrane Semaphorin Function In Vitro

  • Protocol
  • First Online:
  • 2330 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

The semaphorins are a large family of secreted and membrane associated proteins that play numerous key roles in the development and function of the nervous system and other tissues. They have been primarily associated with their function as guidance cues in the developing nervous system. In general, semaphorins have been shown to function as inhibitory guidance cues; however there are also numerous examples where they can function as attractive or permissive cues. Thus it is important to employ a variety of assays to test for semaphorin function. While numerous assays have been established for secreted semaphorins, testing the function of transmembrane semaphorins has been challenging. In this chapter we outline two assays that we have used extensively to test their function. In one assay we examine the effect of a constant source of a transmembrane semaphorin on neurite outgrowth and in a second assay we examine whether neurons will actively avoid growing across islands of cells expressing a transmembrane semaphorin. We have found both assays to be relatively easy to perform and useful to test semaphorin function and signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Levi-Montalcini R, Hamburger V (1951) Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 116(2):321–361

    Article  CAS  PubMed  Google Scholar 

  2. Menesini Chen MG, Chen JS, Levi-Montalcini R (1978) Sympathetic nerve fibers ingrowth in the central nervous system of neonatal rodent upon intracerebral NGF injections. Arch Ital Biol 116(1):53–84

    CAS  PubMed  Google Scholar 

  3. Lance-Jones C, Landmesser L (1980) Motoneurone projection patterns in the chick hind limb following early partial reversals of the spinal cord. J Physiol 302:581–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lance-Jones C, Landmesser L (1981) Pathway selection by embryonic chick motoneurons in an experimentally altered environment. Proc R Soc Lond B Biol Sci 214(1194):19–52

    Article  CAS  PubMed  Google Scholar 

  5. Letourneau PC (1978) Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol 66(1):183–196

    Article  CAS  PubMed  Google Scholar 

  6. Gundersen RW, Barrett JN (1979) Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science 206(4422):1079–1080

    Article  CAS  PubMed  Google Scholar 

  7. Gundersen RW, Barrett JN (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol 87(3 Pt 1):546–554

    Article  CAS  PubMed  Google Scholar 

  8. Lumsden AGS, Davies AM (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306:786–788

    Article  CAS  PubMed  Google Scholar 

  9. Lumsden AG, Davies AM (1986) Chemotropic effect of specific target epithelium in the developing mammalian nervous system. Nature 323(6088):538–539

    Article  CAS  PubMed  Google Scholar 

  10. Cohen S, Levi-Montalcini R (1956) A nerve growth-stimulating factor isolated from snake venom. Proc Natl Acad Sci U S A 42(9):571–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Angeletti P, Calissano P, Chen JS et al (1967) Multiple molecular forms of the nerve growth factor. Biochim Biophys Acta 147(1):180–182

    Article  CAS  PubMed  Google Scholar 

  12. O’Connor R, Tessier-Lavigne M (1999) Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron 24(1):165–178

    Article  PubMed  Google Scholar 

  13. Lohof AM, Quillan M, Dan Y et al (1992) Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci 12(4):1253–1261

    CAS  PubMed  Google Scholar 

  14. Zheng JQ, Felder M, Connor JA et al (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368(6467):140–144

    Article  CAS  PubMed  Google Scholar 

  15. Zheng JQ, Zheng Z, Poo M (1994) Long-range signaling in growing neurons after local elevation of cyclic AMP-dependent activity. J Cell Biol 127(6 Pt 1):1693–1701

    Article  CAS  PubMed  Google Scholar 

  16. Zheng JQ, Poo MM, Connor JA (1996) Calcium and chemotropic turning of nerve growth cones. Perspect Dev Neurobiol 4(2–3):205–213

    CAS  PubMed  Google Scholar 

  17. Zheng JQ, Wan JJ, Poo MM (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci 16(3):1140–1149

    CAS  PubMed  Google Scholar 

  18. de la Torre JR, Hopker VH, Ming GL et al (1997) Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 19(6):1211–1224

    Article  PubMed  Google Scholar 

  19. Hopker VH, Shewan D, Tessier-Lavigne M et al (1999) Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401(6748):69–73

    Article  CAS  PubMed  Google Scholar 

  20. Jin M, Guan CB, Jiang YA et al (2005) Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J Neurosci 25(9):2338–2347

    Article  CAS  PubMed  Google Scholar 

  21. Campbell DS, Regan AG, Lopez JS et al (2001) Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. J Neurosci 21(21):8538–8547

    CAS  PubMed  Google Scholar 

  22. Ming G, Song H, Berninger B et al (1999) Phospholipase C-gamma and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23(1):139–148

    Article  CAS  PubMed  Google Scholar 

  23. Song H, Ming G, He Z et al (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281(5382):1515–1518

    Article  CAS  PubMed  Google Scholar 

  24. Kennedy TE, Serafini T, de la Torre JR et al (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78(3):425–435

    Article  CAS  PubMed  Google Scholar 

  25. Serafini T, Kennedy TE, Galko MJ et al (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78(3):409–424

    Article  CAS  PubMed  Google Scholar 

  26. Patterson PH (1988) On the importance of being inhibited, or saying no to growth cones. Neuron 1(4):263–267

    Article  CAS  PubMed  Google Scholar 

  27. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227

    Article  CAS  PubMed  Google Scholar 

  28. Fan J, Mansfield SG, Redmond T et al (1993) The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 121(3):867–878

    Article  CAS  PubMed  Google Scholar 

  29. Koppel AM, Feiner L, Kobayashi H et al (1997) A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 19:531–537

    Article  CAS  PubMed  Google Scholar 

  30. Rabacchi SA, Solowska JM, Kruk B et al (1999) Collapsin-1/semaphorin-III/D is regulated developmentally in Purkinje cells and collapses pontocerebellar mossy fiber neuronal growth cones. J Neurosci 19(11):4437–4448

    CAS  PubMed  Google Scholar 

  31. Yue X, Son AI, Zhou R (2013) Growth cone collapse assay. Methods Mol Biol 1018:221–227

    Article  CAS  PubMed  Google Scholar 

  32. Muller B, Stahl B, Bonhoeffer F (1990) In vitro experiments on axonal guidance and growth-cone collapse. J Exp Biol 153:29–46

    CAS  PubMed  Google Scholar 

  33. Cox EC, Muller B, Bonhoeffer F (1990) Axonal guidance in the chick visual system: posterior tectal membranes induce collapse of growth cones from the temporal retina. Neuron 4(1):31–37

    Article  CAS  PubMed  Google Scholar 

  34. Raper JA, Kapfhammer JP (1990) The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 4(1):21–29

    Article  CAS  PubMed  Google Scholar 

  35. Weschenfelder M, Weth F, Knoll B et al (2013) The stripe assay: studying growth preference and axon guidance on binary choice substrates in vitro. Methods Mol Biol 1018:229–246

    Article  CAS  PubMed  Google Scholar 

  36. Walter J, Kern-Veits B, Huf J et al (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101(4):685–696

    CAS  PubMed  Google Scholar 

  37. Vielmetter J, Stolze B, Bonhoeffer F et al (1990) In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp Brain Res 81(2):283–287

    Article  CAS  PubMed  Google Scholar 

  38. Drescher U, Kremoser C, Handwerker C et al (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82(3):359–370

    Article  CAS  PubMed  Google Scholar 

  39. Wong JTW, Wong STM, O’Connor TP (1999) Ectopic semaphorin-1a functions as an attractive guidance cue for developing peripheral neurons. Nat Neurosci 2:798–803

    Article  CAS  PubMed  Google Scholar 

  40. Doherty P, Barton CH, Dickson G et al (1989) Neuronal process outgrowth of human sensory neurons on monolayers of cells transfected with cDNAs for five human N-CAM isoforms. J Cell Biol 109(2):789–798

    Article  CAS  PubMed  Google Scholar 

  41. Doherty P, Cohen J, Walsh FS (1990) Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5(2):209–219

    Article  CAS  PubMed  Google Scholar 

  42. Doherty P, Fruns M, Seaton P et al (1990) A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature 343(6257):464–466

    Article  CAS  PubMed  Google Scholar 

  43. Doherty P, Skaper SD, Moore SE et al (1992) A developmentally regulated switch in neuronal responsiveness to NCAM and N-cadherin in the rat hippocampus. Development 115(3):885–892

    CAS  PubMed  Google Scholar 

  44. Lett RL, Wang W, O’Connor TP (2009) Semaphorin 5B is a novel inhibitory cue for corticofugal axons. Cereb Cortex 19(6):1408–1421

    Article  PubMed  Google Scholar 

  45. Matsuoka RL, Chivatakarn O, Badea TC et al (2011) Class 5 transmembrane semaphorins control selective Mammalian retinal lamination and function. Neuron 71(3):460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Browne K, Wang W, Liu RQ et al (2012) Transmembrane semaphorin5B is proteolytically processed into a repulsive neural guidance cue. J Neurochem 123(1):135–146

    Article  CAS  PubMed  Google Scholar 

  47. Brooks P, Montgomery AP, Cheresh D (1999) Use of the 10-day-old chick embryo model for studying angiogenesis. In: Howlett A (ed) Integrin protocols, vol 129, Methods in molecular biology. Humana Press, Totowa, NJ, pp 257–269

    Chapter  Google Scholar 

  48. Liu RQ, Wang W, Legg A et al (2014) Semaphorin 5B is a repellent cue for sensory afferents projecting into the developing spinal cord. Development 141(9):1940–9

    Article  CAS  PubMed  Google Scholar 

  49. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by a Natural Sciences and Engineering Research Council discovery grant to T.P.O.C. (NSERC 171387-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, R.Q., Browne, K., O’Connor, T.P. (2017). Assays to Examine Transmembrane Semaphorin Function In Vitro. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics