Skip to main content

Regulation of Cortical Dendrite Morphology and Spine Organization by Secreted Semaphorins: A Primary Culture Approach

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

Primary tissue culture is an invaluable technique in cell biology and has a long history in demonstrating its versatility in characterizing cellular morphology, function, and behavior. Here, we describe a modified, low density, long-term, primary neuron culture system to characterize dendritic morphology and synaptic spine organization in developing mouse cortical neurons. While this method can be applied to investigate the signaling pathways of a range of extracellular cues’ effect on neuronal development, we focus on how distinct secreted semaphorins regulate dendritic elaboration and spine morphogenesis in deep layer cortical neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baker LE, Carrel A (1926) Action on fibroblasts of the protein fraction of embryonic tissue extract. J Exp Med 44:387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker LE, Carrel A (1926) Effect of the amino acids and dialyzable constituents of embryonic tissue juice on the growth of fibroblasts. J Exp Med 44:397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carrel A, Baker LE (1926) The chemical nature of substances required for cell multiplication. J Exp Med 44:503–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baker LE, Carrel A (1928) The effect of digests of pure proteins on cell proliferation. J Exp Med 47:353–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mains RE, Patterson PH (1973) Primary cultures of dissociated sympathetic neurons. I. Establishment of long-term growth in culture and studies of differentiated properties. J Cell Biol 59:329–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patterson PH, Reichardt LF, Chun LL (1976) Biochemical studies on the development of primary sympathetic neurons in cell culture. Cold Spring Harb Symp Quant Biol 40:389–397

    Article  CAS  PubMed  Google Scholar 

  7. Faivre-Bauman A, Nemeskeri A, Tougard C et al (1980) Immunological evidence for thyroliberin (TRH) neurons in primary cultures of fetal mouse brain cells. Ontogenic aspects. Brain Res 185:289–304

    Article  CAS  PubMed  Google Scholar 

  8. Faivre-Bauman A, Rosenbaum E, Puymirat J et al (1981) Differentiation of fetal mouse hypothalamic cells in serum-free medium. Dev Neurosci 4:118–129

    Article  CAS  PubMed  Google Scholar 

  9. Fishell G, Hatten ME (1991) Astrotactin provides a receptor system for CNS neuronal migration. Development 113:755–765

    CAS  PubMed  Google Scholar 

  10. Fishman RB, Hatten ME (1993) Multiple receptor systems promotes CNS neural migration. J Neurosci 13:3485–3495

    CAS  PubMed  Google Scholar 

  11. Maeda N, Noda M (1998) Involvement of receptor-like protein tyrosine phosphatase ζ/RPTPβ and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J Cell Biol 142:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine phosphorylation of Disabled 1 during neuronal positioning. Genes Dev 13:643–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brewer GJ, Cotman CW (1989) Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res 494:65–74

    Article  CAS  PubMed  Google Scholar 

  14. Brewer GJ, Torricelli JR, Evege EK et al (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  CAS  PubMed  Google Scholar 

  15. Tran TS, Rubio ME, Clem RL et al (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462:1065–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Anda FC, Rosario AL, Durak O et al (2012) Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 15:1022–1031

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pramatarova A, Ochalski PG, Chen K et al (2003) Nck beta interacts with tyrosine-phosphorylated disabled 1 and redistributes in Reelin-stimulated neurons. Mol Cell Biol 23:7210–7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen K, Ochalski PG, Tran TS et al (2004) Interaction between Dab1 and CrkII is promoted by Reelin signaling. J Cell Sci 117:4527–4536

    Article  CAS  PubMed  Google Scholar 

  19. Hoe HS, Tran TS, Matsuoka Y et al (2006) DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 281:35176–35185

    Article  CAS  PubMed  Google Scholar 

  20. Mlechkovich G, Peng S-S, Shacham V et al (2014) Distinct cytoplasmic domains in Plexin-A4 mediate diverse responses to semaphorin 3A in developing mammalian neurons. Sci Signal 7:ra24

    Article  PubMed  Google Scholar 

  21. Lom B, Cohen-Cory S (1999) Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J Neurosci 19:9928–9938

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Patrice Maurel (Rutgers-Newark) and members of the Tran lab for their helpful comments. Work in the authors’ lab on semaphorin signaling in cortical neuron morphogenesis was supported by the Charles and Johanna Busch Biomedical grant to T.S.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy S. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peng, SS., Tran, T.S. (2017). Regulation of Cortical Dendrite Morphology and Spine Organization by Secreted Semaphorins: A Primary Culture Approach. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics