Skip to main content

Using Rotary Shadow Electron Microscopy to Characterize Semaphorin-Mediated Growth Cone Collapse

  • Protocol
  • First Online:
Semaphorin Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

  • 2297 Accesses

Abstract

Rotary shadow electron microscopy (EM) of growth cone cytoskeletons provides a high-resolution method for detecting both global and macromolecular changes in cytoskeletal organization or structure. This approach can be used to study responses to repulsive guidance factors such as semaphorin 3A. Here I describe the procedures used to prepare cultured neurons for rotary-shadow EM, allowing detailed comparisons of cytoskeletal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan J, Mansfield SG, Redman T, Phillip R, Gordon-Weeks PR, Raper JA (1993) The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 121:867–878

    Article  CAS  PubMed  Google Scholar 

  2. Kapfhammer JP, Xu H, Raper JA (2007) The detection and quantification of growth cone collapsing activities. Nat Protoc 2(8):2005–2011, doi:nprot.2007.295 [pii]10.1038/nprot.2007.295

    Article  CAS  PubMed  Google Scholar 

  3. Rauch P, Heine P, Goettgens B, Kas JA (2013) Different modes of growth cone collapse in NG 108-15 cells. Eur Biophys J 42(8):591–605. doi:10.1007/s00249-013-0907-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marx A, Godinez WJ, Tsimashchuk V, Bankhead P, Rohr K, Engel U (2013) Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules. Mol Biol Cell 24(10):1544–1558, doi:mbc.E12-08-0573 [pii]10.1091/mbc.E12-08-0573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown JA, Bridgman PC (2009) Disruption of the cytoskeleton during Semaphorin 3A induced growth cone collapse correlates with differences in actin organization and associated binding proteins. Dev Neurobiol 69(10):633–646. doi:10.1002/dneu.20732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gallo G (2006) RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119(16):3413–3423, doi:119/16/3413 [pii]10.1242/jcs.03084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58(1):92–102

    Article  CAS  PubMed  Google Scholar 

  8. Bridgman PC (2002) Growth cones contain myosin II bipolar filament arrays. Cell Motil Cytoskeleton 52(2):91–96. doi:10.1002/cm.10038

    Article  CAS  PubMed  Google Scholar 

  9. Lewis AK, Bridgman PC (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J Cell Biol 119(5):1219–1243

    Article  CAS  PubMed  Google Scholar 

  10. Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145(5):1009–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bridgman PC, Dailey ME (1989) The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol 108(1):95–109

    Article  CAS  PubMed  Google Scholar 

  12. Schliwa M, van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90(1):222–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bridgman PC, Lewis AK, Victor JC (1993) Comparison of the ability of freeze etch and freeze substitution to preserve actin filament structure. Microsc Res Tech 24(5):385–394. doi:10.1002/jemt.1070240504

    Article  CAS  PubMed  Google Scholar 

  14. Hirokawa N, Heuser JE (1981) Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J Cell Biol 91(2 Pt 1):399–409

    Article  CAS  PubMed  Google Scholar 

  15. Dailey ME, Bridgman PC (1991) Structure and organization of membrane organelles along distal microtubule segments in growth cones. J Neurosci Res 30(1):242–258. doi:10.1002/jnr.490300125

    Article  CAS  PubMed  Google Scholar 

  16. Letourneau PC (1983) Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J Cell Biol 97(4):963–973

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant; contract grant number: NS026150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bridgman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bridgman, P.C. (2017). Using Rotary Shadow Electron Microscopy to Characterize Semaphorin-Mediated Growth Cone Collapse. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics