Skip to main content

Methods to Prepare Aluminum Salt-Adjuvanted Vaccines

  • Protocol
  • First Online:
Vaccine Adjuvants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1494))

Abstract

Many human vaccines contain certain insoluble aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate as vaccine adjuvants to boost the immunogenicity of the vaccines. Aluminum salts have been used as vaccine adjuvants for decades and have an established, favorable safety profile. However, preparing aluminum salts and aluminum salt-adjuvanted vaccines in a consistent manner remains challenging. This chapter discusses methods to prepare aluminum salts and aluminum salt-adjuvanted vaccines, factors to consider during preparation, and methods to characterize the vaccines after preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global vaccine market in 2015. http://www.statista.com/statistics/265102/revenues-in-the-global-vaccine-market/

  2. Global vaccine market. http://www.who.int/immunization/programmes_systems/procurement/market/world_vaccine_market_trends.pdf

  3. Top 15 Vaccines of 2012. http://www.genengnews.com/insight-and-intelligence/top-15-vaccines-of-2012/77899844/?page=2

  4. FDA complete list of vaccines [updated 12/03/2015].http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm093833.htm

  5. Cox JC, Coulter AR (1992) Advances in adjuvant technology and application. In: Yong W (ed) Animal parasite control utilizing biotechnology. CRC Press, Boca Raton, FL, pp 49–112

    Google Scholar 

  6. Gupta RK, Siber GR (1995) Adjuvants for human vaccines—current status, problems and future prospects. Vaccine 13(14):1263–1276

    Article  CAS  PubMed  Google Scholar 

  7. Gupta RK, Relyveld EH, Lindblad EB, Bizzini B, Ben-Efraim S, Gupta CK (1993) Adjuvants—a balance between toxicity and adjuvanticity. Vaccine 11(3):293–306

    Article  CAS  PubMed  Google Scholar 

  8. Gupta RK, Rost BE, Relyveld E, Siber GR (1995) Adjuvant properties of aluminum and calcium compounds. In: Powell MF, Newman MJ (eds) Vaccine design. Springer, New York, pp 229–248

    Chapter  Google Scholar 

  9. Hem SL, White JL (1995) Structure and properties of aluminum-containing adjuvants. In: Powell MF, Newman MJ (eds) Vaccine design. Springer, New York, pp 249–276

    Chapter  Google Scholar 

  10. Holt LB (1950) Developments in diphtheria prophylaxis. William Heinemann Medical Books, London, pp 1–181

    Google Scholar 

  11. Aprile MA, Wardlaw A (1966) Aluminium compounds as adjuvants for vaccines and toxoids in man: a review. Can J Public Health 57:343–354

    CAS  PubMed  Google Scholar 

  12. Gupta RK, Rost BE (2000) Aluminum compounds as vaccine adjuvants. In: Vaccine adjuvants. Springer, New York, pp 65–89

    Chapter  Google Scholar 

  13. Al-Shakhshir R, Regnier F, White JL, Hem SL (1994) Effect of protein adsorption on the surface charge characteristics of aluminium-containing adjuvants. Vaccine 12(5):472–474

    Article  CAS  PubMed  Google Scholar 

  14. Glenny AT, Pope CG, Waddington H, Wallace U (1986) XXIII- The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol 29:38–39

    Google Scholar 

  15. van Ramshorst J (1949) The adsorption of diphtheria toxoid on aluminium phosphate. Recl Trav Chim Pays-Bas 68(2):169–180

    Article  Google Scholar 

  16. Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32(3):155–172

    Article  CAS  PubMed  Google Scholar 

  17. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Aldayel AM, Cui Z (2014) Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J Control Release 173:148–157

    Article  CAS  PubMed  Google Scholar 

  19. Qureshi N, Mascagni P, Ribi E, Takayama K (1985) Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595. Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination. J Biol Chem 260(9):5271–5278

    CAS  PubMed  Google Scholar 

  20. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22(3):411–416

    Article  CAS  PubMed  Google Scholar 

  21. O'hagan D, Wack A, Podda A (2007) MF59 is a safe and potent vaccine adjuvant for flu vaccines in humans: what did we learn during its development? Clin Pharmacol Ther 82(6):740–744

    Article  PubMed  Google Scholar 

  22. Klucker MF, Dalençon F, Probeck P, Haensler J (2012) AF03, an alternative squalene emulsion‐based vaccine adjuvant prepared by a phase inversion temperature method. J Pharm Sci 101(12):4490–4500

    Article  PubMed  Google Scholar 

  23. Shinoda K, Arai H (1964) The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. J Phys Chem 68(12):3485–3490

    Article  CAS  Google Scholar 

  24. Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1(1):111–118

    Article  CAS  PubMed  Google Scholar 

  25. Cryz SJ, Que JU, Glück R (1996) A virosome vaccine antigen delivery system does not stimulate an antiphospholipid antibody response in humans. Vaccine 14(14):1381–1383

    Article  CAS  PubMed  Google Scholar 

  26. Herzog C, Hartmann K, Künzi V, Kürsteiner O, Mischler R, Lazar H et al (2009) Eleven years of Inflexal® V—a virosomal adjuvanted influenza vaccine. Vaccine 27(33):4381–4387

    Article  CAS  PubMed  Google Scholar 

  27. Nicklas W (1992) Aluminum salts. Res Immunol 143(5):489–494

    Article  CAS  PubMed  Google Scholar 

  28. Edelman R (1980) Vaccine adjuvants. Rev Infect Dis 2(3):370–383

    Article  CAS  PubMed  Google Scholar 

  29. Bomford R (1989) Aluminium salts: perspectives in their use as adjuvants. In: Immunological adjuvants and vaccines. Springer, New York

    Google Scholar 

  30. Lindblad E, Sparck J (1987) Basic concepts in the application of immunological adjuvants. Scand J Lab Anim Sci 14(1):1–13

    Google Scholar 

  31. Seal S, Johnson SJ (1941) Studies on the purification of alum-precipitated diphtheria toxoid. J Infect Dis 69:102–107

    Article  CAS  Google Scholar 

  32. Alving CR, Detrick B, Richards RL, Lewis MG, Shafferman A, Eddy GA (1993) Novel adjuvant strategies for experimental malaria and AIDS vaccines. Ann N Y Acad Sci 690:265–275

    Article  CAS  PubMed  Google Scholar 

  33. Stewart-Tull D (1989) Recommendations for the assessment of adjuvants (immunopotentiators). In: Greogoriadis G, Allsion A, Poste G (eds) Immunological adjuvants and vaccines. Springer, New York, pp 213–226

    Chapter  Google Scholar 

  34. Stewart-Tull D (1991) The assessment and use of adjuvants. In: Vaccines. Springer, New York, pp 85–92

    Chapter  Google Scholar 

  35. Dresser DW (1967) Immunization of experimental animals. In: Weir DM (ed) Handbook of experimental immunology. Blackwell, Oxford, p 8.10.1

    Google Scholar 

  36. Williams CA, Chase MW (1967) Production of antiserum. In: Methods in immunology and immunochemistry, vol 1. Academic, London, pp 197–209

    Google Scholar 

  37. Nail SL, White JL, Hem SL (1976) Structure of aluminum hydroxide gel I: initial precipitate. J Pharm Sci 65(8):1188–1191

    Article  CAS  PubMed  Google Scholar 

  38. Hem SL, HogenEsch H (2007) Aluminum-containing adjuvants: properties, formulation, and use. In: Vaccine adjuvants and delivery systems. Wiley, Hoboken, NJ, pp 81–114

    Chapter  Google Scholar 

  39. Glenny AT, Buttle AH, Stevens MF (1931) Rate of disappearance of diphtheria toxoid injected into rabbits and guinea pigs:toxoid precipitated with alum. J Pathol Bacteriol 34:267–275

    Article  CAS  Google Scholar 

  40. Hu J-G, Kitagawa T (1990) Studies on the optimal immunization schedule of experimental animals. VI. Antigen dose-response of aluminum hydroxide-aided immunization and booster effect under low antigen dose. Chem Pharm Bull 38(10):2775–2779

    Article  CAS  PubMed  Google Scholar 

  41. Ericsson H (1946) Purification and adsorption of diphtheria toxoid. Nature 158(350):1

    Google Scholar 

  42. WHO (1977) World Health Organization Manual for the production and control of vaccines: diptheria toxoid; Appendix D.21: Preparation of aluminum phosphate suspension.: BLG/UNDP/77.1.Rev.1

    Google Scholar 

  43. Herbert WJ (1973) Mineral-oil adjuvants and the immunization of laboratory animals. In: Weir D (ed) Handbook of experimental immunology, vol 3. Blackwell Scientific Publications, Oxford, pp A 3.1–A 3.15

    Google Scholar 

  44. Weeke B, Weeke E, Løwenstein H (1975) The adsorption of serum proteins to aluminium hydroxide gel examined by means of quantitative immunoelectrophoresis. Scand J Immunol 4(s2):149–154

    Article  Google Scholar 

  45. Technical data sheet ‘Alhydrogel®’. http://www.invivogen.com/PDF/Alhydrogel_TDS.pdf

  46. Romero Mendez IZ, Shi Y, HogenEsch H, Hem SL (2007) Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 25(5):825–833

    Article  CAS  PubMed  Google Scholar 

  47. Hem SL, Hogenesch H (2007) Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines 6(5):685–698

    Article  CAS  PubMed  Google Scholar 

  48. Ruwona TB, Xu H, Taylor A, Cui Z (2016) Towards understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles. Vaccine 34(27):3059–3067

    Article  CAS  PubMed  Google Scholar 

  49. Gupta RK, Siber GR (1994) Comparison of adjuvant activities of aluminium phosphate, calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals 22(1):53–63

    Article  CAS  PubMed  Google Scholar 

  50. WHO (1977) Manual for the production and control of vaccines-Tetanus toxoid: BLG/UNDP/77.2 Rev 1

    Google Scholar 

  51. Corbel M, Griffiths E, Winsnes R (1997) Workshop on standardisation of aluminium adsorbed vaccines. Biologicals 25(3):351–353

    Article  Google Scholar 

  52. Li X, Thakkar SG, Ruwona TB, Williams RO, Cui Z (2015) A method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitution. J Controlled Release 204:38–50

    Article  CAS  Google Scholar 

  53. May JC, Progar J, Chin R (1984) The aluminum content of biological products containing aluminum adjuvants: determination by atomic absorption spectrometry. J Biol Stand 12(2):175–183

    Article  CAS  PubMed  Google Scholar 

  54. Olesik JW (1991) Elemental analysis using ICP-OES and ICP/MS. Anal Chem 63(1):12A–21A

    Article  CAS  Google Scholar 

  55. Urasa IT (1984) Determination of arsenic, boron, carbon, phosphorus, selenium, and silicon in natural waters by direct current plasma atomic emission spectrometry. Anal Chem 56(6):904–908

    Article  CAS  Google Scholar 

  56. Urasa I, Ferede F (1987) Use of direct current plasma as an element selective detector for simultaneous ion chromatographic determination of arsenic (III) and arsenic (V) in the presence of other common anions. Anal Chem 59(11):1563–1568

    Article  CAS  Google Scholar 

  57. Kenkel J (2010) Analytical chemistry for technicians. CRC Press, Boca Raton, FL

    Google Scholar 

  58. United States Pharmacopeia and National Formulary (USP 38-NF 33). 2015:2130.

    Google Scholar 

  59. European Pharmacopoeia 2.5.11.

    Google Scholar 

  60. Chang M-F, White JL, Nail SL, Hem SL (1997) Role of the electrostatic attractive force in the adsorption of proteins by aluminum hydroxide adjuvant. PDA J Pharm Sci Technol 51(1):25–29

    CAS  PubMed  Google Scholar 

  61. Al-Shakhshir RH, Regnier FE, White JL, Hem SL (1995) Contribution of electrostatic and hydrophobic interactions to the adsorption of proteins by aluminium-containing adjuvants. Vaccine 13(1):41–44

    Article  CAS  PubMed  Google Scholar 

  62. Seeber SJ, White JL, Hem SL (1991) Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine 9(3):201–203

    Article  CAS  PubMed  Google Scholar 

  63. Kerkhof NJ, White JL, Hem SL (1975) Effect of dilution on reactivity and structure of aluminum hydroxide gel. J Pharm Sci 64(6):940–942

    Article  CAS  PubMed  Google Scholar 

  64. BECO standard range filters. http://www.eaton.com/Eaton/ProductsServices/Filtration/DepthFiltration/DepthFilterSheets/FilterSheets/BECOStandardRange/index.htm

  65. Kristensen D, Chen D, Cummings R (2011) Vaccine stabilization: research, commercialization, and potential impact. Vaccine 29(41):7122–7124

    Article  CAS  PubMed  Google Scholar 

  66. Rowe RC, Sheskey PJ, Quinn ME, Association AP, Press P (2009) Handbook of pharmaceutical excipients. Pharmaceutical press, London

    Google Scholar 

  67. Organization WH (1998) Safe vaccine handling, cold chain and immunizations. World Health Organization, Geneva

    Google Scholar 

  68. Galazka A, Milstien J, Zaffran M (1998) Thermostability of vaccines. World Health Organization, Global Programme for Vaccines and Immunization, Geneva

    Google Scholar 

  69. Maa YF, Zhao L, Payne LG, Chen D (2003) Stabilization of alum-adjuvanted vaccine dry powder formulations: mechanism and application. J Pharm Sci 92(2):319–332

    Article  CAS  PubMed  Google Scholar 

  70. Randolph TW, Clausi A, Carpenter JF, Schwartz DK (2008) Method of preparing an immunologically-active adjuvant-bound dried vaccine composition. USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Cui Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thakkar, S.G., Cui, Z. (2017). Methods to Prepare Aluminum Salt-Adjuvanted Vaccines. In: Fox, C. (eds) Vaccine Adjuvants. Methods in Molecular Biology, vol 1494. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6445-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6445-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6443-7

  • Online ISBN: 978-1-4939-6445-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics