Skip to main content

A Protocol for Protein Profiling Using Chemoselective Cleavable Linker Probes in Semi-permeabilized Cells

  • Protocol
  • First Online:
Activity-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1491))

  • 2619 Accesses

Abstract

Activity-based protein profiling using activity-based probes (ABPs) resulted in the identification of various enzymes that are involved in the onset and progress of diseases. Detection of such proteins, often expressed at low abundance, is greatly enhanced by incorporating chemically cleavable linkers in the ABP of choice. Initial affinity purification, followed by tailored chemical cleavage of the linker, allows for specific release of the captured enzymes and their interaction partners. When the ABPs are delivered directly to semi-permeabilized cells, in contrast to a crude cell lysate, the sensitivity and efficacy of cell impermeable probes can be enhanced even further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haedke U, Kuttler EV, Vosyka O, Yang Y, Verhelst SH (2013) Tuning probe selectivity for chemical proteomics applications. Curr Opin Chem Biol 17(1):102–109. doi:10.1016/j.cbpa.2012.11.024

    Article  CAS  PubMed  Google Scholar 

  2. Heal WP, Dang TH, Tate EW (2011) Activity-based probes: discovering new biology and new drug targets. Chem Soc Rev 40(1):246–257. doi:10.1039/c0cs00004c

    Article  CAS  PubMed  Google Scholar 

  3. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 9(10):1149–1159

    Article  CAS  PubMed  Google Scholar 

  4. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140(1):49–61. doi:10.1016/j.cell.2009.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN (2006) Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol 61(1):142–150. doi:10.1111/j.1365-2958.2006.05199.x

    Article  CAS  PubMed  Google Scholar 

  6. Ovaa H, Kessler BM, Rolen U, Galardy PJ, Ploegh HL, Masucci MG (2004) Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proc Natl Acad Sci U S A 101(8):2253–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28(7):710–721. doi:10.1038/nbt.1661

    Article  CAS  PubMed  Google Scholar 

  8. Li N, Kuo CL, Paniagua G, van den Elst H, Verdoes M, Willems LI, van der Linden WA, Ruben M, van Genderen E, Gubbens J, van Wezel GP, Overkleeft HS, Florea BI (2013) Relative quantification of proteasome activity by activity-based protein profiling and LC-MS/MS. Nat Protoc 8(6):1155–1168. doi:10.1038/nprot.2013.065

    Article  PubMed  Google Scholar 

  9. Verhelst SH, Fonovic M, Bogyo M (2007) A mild chemically cleavable linker system for functional proteomic applications. Angew Chem Int Ed Engl 46(8):1284–1286. doi:10.1002/anie.200603811

    Article  CAS  PubMed  Google Scholar 

  10. Yang YY, Ascano JM, Hang HC (2010) Bioorthogonal chemical reporters for monitoring protein acetylation. J Am Chem Soc 132(11):3640–3641. doi:10.1021/ja908871t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dirksen A, Yegneswaran S, Dawson PE (2010) Bisaryl hydrazones as exchangeable biocompatible linkers. Angew Chem Int Ed Engl 49(11):2023–2027. doi:10.1002/anie.200906756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geurink PP, Florea BI, Li N, Witte MD, Verasdonck J, Kuo CL, van der Marel GA, Overkleeft HS (2010) A cleavable linker based on the levulinoyl ester for activity-based protein profiling. Angew Chem Int Ed Engl 49(38):6802–6805. doi:10.1002/anie.201001767

    Article  CAS  PubMed  Google Scholar 

  13. de Jong A, Merkx R, Berlin I, Rodenko B, Wijdeven RH, El Atmioui D, Yalcin Z, Robson CN, Neefjes JJ, Ovaa H (2012) Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes. Chembiochem 13(15):2251–2258. doi:10.1002/cbic.201200497

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sanyal S, Claessen JH, Ploegh HL (2012) A viral deubiquitylating enzyme restores dislocation of substrates from the endoplasmic reticulum (ER) in semi-intact cells. J Biol Chem 287(28):23594–23603. doi:10.1074/jbc.M112.365312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Claessen JH, Witte MD, Yoder NC, Zhu AY, Spooner E, Ploegh HL (2013) Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection. Chembiochem 14(3):343–352. doi:10.1002/cbic.201200701

    Article  CAS  PubMed  Google Scholar 

  16. Ploegh HL (2001) One-dimensional isoelectric focusing of proteins in slab gels. Curr Protoc Protein Sci Chapter 10: Unit 10 12. doi:10.1002/0471140864.ps1002s00

  17. Gallagher SR (2006) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Mol Biol Chapter 10: Unit 10 12A. doi:10.1002/0471142727.mb1002as75

  18. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8(2):93–99. doi:10.1002/elps.1150080203

    Article  CAS  Google Scholar 

  19. Mortz E, Krogh TN, Vorum H, Gorg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1(11):1359–1363. doi:10.1002/1615-9861(200111)1:11<1359::Aid-Prot1359>3.3.Co;2-H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.D.W. is supported by a NWO-VENI grant from The Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Witte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Claessen, J.H.L., Witte, M.D. (2017). A Protocol for Protein Profiling Using Chemoselective Cleavable Linker Probes in Semi-permeabilized Cells. In: Overkleeft, H., Florea, B. (eds) Activity-Based Proteomics. Methods in Molecular Biology, vol 1491. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6439-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6439-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6437-6

  • Online ISBN: 978-1-4939-6439-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics