Skip to main content

Biochemical and Mass Spectrometry-Based Approaches to Profile SUMOylation in Human Cells

  • Protocol
  • First Online:
Activity-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1491))

Abstract

Posttranslational modification of proteins with the small ubiquitin-like modifier (SUMO) regulates protein function in the context of cell cycle and DNA repair. The occurrence of SUMOylation is less frequent as compared to protein modification with ubiquitin, and appears to be controlled by a smaller pool of conjugating and deconjugating enzymes. Mass spectrometry has been instrumental in defining specific as well as proteome-wide views of SUMO-dependent biological processes, and several methodological approaches have been developed in the recent past. Here, we provide an overview of the latest experimental approaches to the study of SUMOylation, and also describe hands-on protocols using a combination of biochemistry and mass spectrometry-based technologies to profile proteins that are SUMOylated in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarangi P, Zhao X (2015) SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci 40(4):233–242. doi:10.1016/j.tibs.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vertegaal AC (2010) SUMO chains: polymeric signals. Biochem Soc Trans 38(Pt 1):46–49. doi:10.1042/BST0380046

    Article  CAS  PubMed  Google Scholar 

  3. Heride C, Urbe S, Clague MJ (2014) Ubiquitin code assembly and disassembly. Curr Biol 24(6):R215–R220. doi:10.1016/j.cub.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  4. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276(38):35368–35374. doi:10.1074/jbc.M104214200

    Article  CAS  PubMed  Google Scholar 

  5. Cong L, Pakala SB, Ohshiro K, Li DQ, Kumar R (2011) SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function. J Biol Chem 286(51):43793–43808. doi:10.1074/jbc.M111.267237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schimmel J, Eifler K, Sigurethsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, Kelstrup CD, Francavilla C, Medema RH, Olsen JV, Vertegaal AC (2014) Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell 53(6):1053–1066. doi:10.1016/j.molcel.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  7. Nunez-O’Mara A, Berra E (2013) Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade. Biol Chem 394(4):459–469. doi:10.1515/hsz-2012-0319

    PubMed  Google Scholar 

  8. Bursomanno S, Beli P, Khan AM, Minocherhomji S, Wagner SA, Bekker-Jensen S, Mailand N, Choudhary C, Hickson ID, Liu Y (2015) Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair (Amst) 25:84–96. doi:10.1016/j.dnarep.2014.10.011

    Article  CAS  Google Scholar 

  9. Bursomanno S, McGouran JF, Kessler BM, Hickson ID, Liu Y (2015) Regulation of SUMO2 target proteins by the proteasome in human cells exposed to replication stress. J Proteome Res 14(4):1687–1699. doi:10.1021/pr500997p

    Article  CAS  PubMed  Google Scholar 

  10. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F (2008) Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell 30(5):610–619. doi:10.1016/j.molcel.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  11. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5):538–546. doi:10.1038/ncb1716

    Article  CAS  PubMed  Google Scholar 

  12. Guzzo CM, Matunis MJ (2013) Expanding SUMO and ubiquitin-mediated signaling through hybrid SUMO-ubiquitin chains and their receptors. Cell Cycle 12(7):1015–1017. doi:10.4161/cc.24332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Denuc A, Bosch-Comas A, Gonzalez-Duarte R, Marfany G (2009) The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS One 4(5), e5571. doi:10.1371/journal.pone.0005571

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhen Y, Knobel PA, Stracker TH, Reverter D (2014) Regulation of USP28 deubiquitinating activity by SUMO conjugation. J Biol Chem 289(50):34838–34850. doi:10.1074/jbc.M114.601849

    Article  PubMed  PubMed Central  Google Scholar 

  15. Impens F, Radoshevich L, Cossart P, Ribet D (2014) Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A 111(34):12432–12437. doi:10.1073/pnas.1413825111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Da Silva-Ferrada E, Lopitz-Otsoa F, Lang V, Rodriguez MS, Matthiesen R (2012) Strategies to identify recognition signals and targets of SUMOylation. Biochem Res Int 2012:875148. doi:10.1155/2012/875148

    PubMed  PubMed Central  Google Scholar 

  17. Chicooree N, Griffiths JR, Connolly Y, Smith DL (2013) Chemically facilitating the generation of diagnostic ions from SUMO(2/3) remnant isopeptides. Rapid Commun Mass Spectrom 27(18):2108–2114. doi:10.1002/rcm.6670

    Article  CAS  PubMed  Google Scholar 

  18. Chicooree N, Griffiths JR, Connolly Y, Tan CT, Malliri A, Eyers CE, Smith DL (2013) A novel approach to the analysis of SUMOylation with the independent use of trypsin and elastase digestion followed by database searching utilising consecutive residue addition to lysine. Rapid Commun Mass Spectrom 27(1):127–134. doi:10.1002/rcm.6425

    Article  CAS  PubMed  Google Scholar 

  19. Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT (2014) Proteome-wide identification of SUMO2 modification sites. Sci Signal 7(323):ra2. doi:10.1126/scisignal.2005146

    Article  Google Scholar 

  20. Xiao Y, Pollack D, Nieves E, Winchell A, Callaway M, Vigodner M (2015) Can your protein be sumoylated? A quick summary and important tips to study SUMO-modified proteins. Anal Biochem 477:95–97. doi:10.1016/j.ab.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  21. Mackeen MM, Kramer HB, Chang KH, Coleman ML, Hopkinson RJ, Schofield CJ, Kessler BM (2010) Small-molecule-based inhibition of histone demethylation in cells assessed by quantitative mass spectrometry. J Proteome Res 9(8):4082–4092. doi:10.1021/pr100269b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143

    Article  CAS  PubMed  Google Scholar 

  23. Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B (2011) Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics 10 (2):M110 003830. doi:10.1074/mcp.M110.003830

  24. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. doi:10.1016/j.cell.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  25. Merl J, Ueffing M, Hauck SM, von Toerne C (2012) Direct comparison of MS-based label-free and SILAC quantitative proteome profiling strategies in primary retinal Muller cells. Proteomics 12(12):1902–1911. doi:10.1002/pmic.201100549

    Article  CAS  PubMed  Google Scholar 

  26. Trudgian DC, Ridlova G, Fischer R, Mackeen MM, Ternette N, Acuto O, Kessler BM, Thomas B (2011) Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline. Proteomics 11(14):2790–2797. doi:10.1002/pmic.201000800

    Article  CAS  PubMed  Google Scholar 

  27. Fischer R, Kessler BM (2015) Gel-aided sample preparation (GASP)-A simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells. Proteomics 15(7):1224–1229. doi:10.1002/pmic.201400436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39(4):641–652. doi:10.1016/j.molcel.2010.07.026

    Article  CAS  PubMed  Google Scholar 

  29. Hendriks IA, D’Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21(10):927–936. doi:10.1038/nsmb.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Kessler, Hickson and Liu groups for helpful discussions, and Nicola Ternette and Roman Fischer for help with the analysis by mass spectrometry. This work was supported by CRUK (B.M.K.), John Fell Fund 133/075 (B.M.K.), and the Wellcome Trust 097813/Z/11/Z (B.M.K.); the Danish National Research Foundation (DNRF) (I.D.H., Y.L.), the Danish Medical Research council (I.D.H.), and the European Research Council (I.D.H.). S.B. was funded by a Ph.D. fellowship from the Faculty of Health and Medical Sciences, University of Copenhagen.

Conflicts of Interest

B.M.K. is associated with Cancer Research Technologies and Forma Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt M. Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kessler, B.M., Bursomanno, S., McGouran, J.F., Hickson, I.D., Liu, Y. (2017). Biochemical and Mass Spectrometry-Based Approaches to Profile SUMOylation in Human Cells. In: Overkleeft, H., Florea, B. (eds) Activity-Based Proteomics. Methods in Molecular Biology, vol 1491. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6439-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6439-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6437-6

  • Online ISBN: 978-1-4939-6439-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics