Skip to main content

High-Throughput Nuclease Probing of RNA Structures Using FragSeq

  • Protocol
  • First Online:
RNA Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1490))

Abstract

High-throughput sequencing of cDNA (RNA-Seq) can be used to generate nuclease accessibility data for many distinct transcripts in the same mixture simultaneously. Such assays accelerate RNA structure analysis and provide researchers with new technologies to tackle biological questions on a transcriptome-wide scale. FragSeq is an experimental assay for transcriptome-wide RNA structure probing using RNA-Seq, coupled with data analysis tools that allow quantitative determination of nuclease accessibility at single-base resolution. We provide a practical guide to designing and carrying out FragSeq experiments and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wurst RM, Vournakis JN, Maxam AM (1978) Structure mapping of 5′-32P-labeled RNA with S1 nuclease. Biochemistry 17:4493–4499. doi: 10.1021/bi00614a021

    Google Scholar 

  2. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20:295–304. doi:10.1016/j.sbi.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15:469–479. doi:10.1038/nrg3681

    Article  CAS  PubMed  Google Scholar 

  4. Kwok CK, Tang Y, Assmann SM, Bevilacqua PC (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci 40:221–232. doi:10.1016/j.tibs.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  5. Underwood JG, Uzilov AV, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001. doi:10.1038/nmeth.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kertesz M, Wan Y, Mazor E et al (2010) Probing RNA structure genome-wide using high throughput sequencing. Protoc Exch. doi:10.1038/nprot.2010.152

    Google Scholar 

  7. Li F, Zheng Q, Ryvkin P et al (2012) Global analysis of RNA secondary structure in two metazoans. Cell Rep 1:69–82. doi:10.1016/j.celrep.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Sugimoto Y, Vigilante A, Darbo E et al (2015) {hiCLIP} reveals the in vivo atlas of {mRNA} secondary structures recognized by Staufen 1. Nature 519:491–494. doi:10.1038/nature14280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lucks JB, Mortimer SA, Trapnell C et al (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068. doi:10.1073/pnas.1106501108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seetin MG, Kladwang W, Bida JP, Das R (2014) Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. In: Waldsich C (ed) Methods Mol Biol. Humana, New York, pp 95–117

    Google Scholar 

  11. Spitale RC, Flynn RA, Zhang QC et al (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–490. doi:10.1038/nature14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Talkish J, May G, Lin Y et al (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–720. doi:10.1261/rna.042218.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Incarnato D, Neri F, Anselmi F, Oliviero S (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 15:491. doi:10.1186/s13059-014-0491-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Siegfried NA, Busan S, Rice GM et al (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965. doi:10.1038/nmeth.3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Homan PJ, Favorov OV, Lavender CA et al (2014) Single-molecule correlated chemical probing of RNA. Proc Natl Acad Sci U S A 111:13858–13863. doi:10.1073/pnas.1407306111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hector RD, Burlacu E, Aitken S et al (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res 42:12138–12154. doi:10.1093/nar/gku815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poulsen LD, Kielpinski LJ, Salama SR et al (2015) SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data. RNA 21:1042–1052. doi:10.1261/rna.047068.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rouskin S, Zubradt M, Washietl S et al (2013) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705. doi:10.1038/nature12894

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ding Y, Tang Y, Kwok CK et al (2013) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700. doi:10.1038/nature12756

    Article  PubMed  Google Scholar 

  20. Kielpinski LJ, Vinther J (2014) Massive parallel-sequencing-based hydroxyl radical probing of RNA accessibility. Nucleic Acids Res 42:e70. doi:10.1093/nar/gku167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Darty K, Denise A, Ponty Y (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974–1975. doi:10.1093/bioinformatics/btp250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kielpinski LJ, Boyd M, Sandelin A, Vinther J (2013) Detection of reverse transcriptase termination sites using cDNA ligation and massive parallel sequencing. In: Shomron N (ed) Methods Mol Biol. Humana, New York, pp 213–231

    Google Scholar 

  23. Kielpinski LJ, Sidiropoulos N, Vinther J (2015) Reproducible analysis of sequencing-based RNA structure-probing data with user-friendly tools. Methods Enzymol 558:153–180

    Article  CAS  PubMed  Google Scholar 

  24. Cameron V, Uhlenbeck OC (1977) 3′-Phosphatase activity in T4 polynucleotide kinase. Biochemistry 16:5120–5126. doi:10.1021/bi00642a027

    Article  CAS  PubMed  Google Scholar 

  25. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129. doi:10.1186/1471-2105-11-129

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gesteland R, Cech T, Atkins J (2005) The RNA World, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  28. Singh R, Reddy R (1989) Gamma-monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc Natl Acad Sci U S A 86:8280–8283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  30. Lingner J, Keller W (1993) 3′-End labeling of RNA with recombinant yeast poly(A) polymerase. Nucleic Acids Res 21:2917–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruce AG, Uhlenbeck OC (1978) Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res 5:3665–3677. doi:10.1093/nar/5.10.366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malone C, Brennecke J, Czech B et al (2012) Preparation of small RNA libraries for high-throughput sequencing. Cold Spring Harb Protoc 2012:1067–1077. doi:10.1101/pdb.prot071431

    Article  PubMed  Google Scholar 

  33. Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315(5809):241–244. doi:10.1126/science.1132839

    Article  CAS  PubMed  Google Scholar 

  34. Li TW, Weeks KM (2006) Structure-independent and quantitative ligation of single-stranded DNA. Anal Biochem 349:242–246. doi:10.1016/j.ab.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  35. Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39:1–12. doi:10.1093/nar/gkr693

    Article  Google Scholar 

  36. Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-throughput sequencing data. Bioinformatics 28:3169–3177. doi:10.1093/bioinformatics/bts605

    Article  CAS  PubMed  Google Scholar 

  37. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006. doi:10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci U S A 106:97–102. doi:10.1073/pnas.0806929106

    Article  CAS  PubMed  Google Scholar 

  39. Sobczak K, Michlewski G, de Mezer M et al (2010) Trinucleotide repeat system for sequence specificity analysis of RNA structure probing reagents. Anal Biochem 402:40–46. doi:10.1016/j.ab.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  40. Lowman HB, Draper DE (1986) On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem 261:5396–5403

    CAS  PubMed  Google Scholar 

  41. Auron PE, Weber LD, Rich A (1982) Comparison of transfer ribonucleic acid structures using cobra venom and S1 endonucleases. Biochemistry 21:4700–4706. doi:10.1021/bi00262a028

    Article  CAS  PubMed  Google Scholar 

  42. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1006/abio.1987.9999

    Article  CAS  PubMed  Google Scholar 

  43. Schutz K, Hesselberth JR, Fields S (2010) Capture and sequence analysis of RNAs with terminal 2′,3′-cyclic phosphates. RNA 16:621–631. doi:10.1261/rna.1934910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Skinner ME, Uzilov AV, Stein LD et al (2009) JBrowse: a next-generation genome browser. Genome Res 19:1630–1638. doi:10.1101/gr.094607.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luehrsen KR, Fox GE (1981) Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA. Proc Natl Acad Sci U S A 78:2150–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank David H. Mathews for the invitation to write this chapter. We also thank John St. John, Yann Ponty, and Lukasz J. Kielpinski for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew V. Uzilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Uzilov, A.V., Underwood, J.G. (2016). High-Throughput Nuclease Probing of RNA Structures Using FragSeq. In: Turner, D., Mathews, D. (eds) RNA Structure Determination. Methods in Molecular Biology, vol 1490. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6433-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6433-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6431-4

  • Online ISBN: 978-1-4939-6433-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics