Skip to main content

Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo

  • Protocol
  • First Online:
RNA Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1490))

Abstract

Chemical probing is often used to gain knowledge on the secondary and tertiary structures of RNA molecules either free or engaged in complexes with ligands. The method monitors the reactivity of each nucleotide towards chemicals of various specificities reflecting the hydrogen bonding environment of each nucleotide within the RNA molecule. In addition, information can be obtained on the binding site of a ligand (noncoding RNAs, protein, metabolites), and on RNA conformational changes that accompanied ligand binding or perturbation of the environmental cues. The detection of the modifications can be obtained either by using end-labeled RNA molecules or by primer extension using reverse transcriptase. The goal of this chapter is to provide the reader with an experimental guide to probe the structure of RNA in vitro and in vivo with the most suitable chemical probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lioliou E, Romilly C, Romby P, Fechter P (2010) RNA-mediated regulation in bacteria: from natural to artificial systems. N Biotechnol 27:222–235

    Article  CAS  PubMed  Google Scholar 

  2. Bastet L, Dube A, Masse E, Lafontaine DA (2011) New insights into riboswitch regulation mechanisms. Mol Microbiol 80:1148–1154

    Article  CAS  PubMed  Google Scholar 

  3. Narberhaus F (2010) Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol 7:84–89

    Article  CAS  PubMed  Google Scholar 

  4. Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, Gualerzi CO, Pon CL (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37:21–33

    Article  CAS  PubMed  Google Scholar 

  5. Nechooshtan G, Elgrably-Weiss M, Sheaffer A, Westhof E, Altuvia S (2009) A pH-responsive riboregulator. Genes Dev 23:2650–2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramesh A, Winkler WC (2010) Magnesium-sensing riboswitches in bacteria. RNA Biol 7:77–83

    Article  CAS  PubMed  Google Scholar 

  7. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  Google Scholar 

  8. Green NJ, Grundy FJ, Henkin TM (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 584:318–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P, Yusupov M, Klaholz BP (2007) Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130:1019–1031

    Article  CAS  PubMed  Google Scholar 

  10. Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44:167–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogel J (2009) A rough guide to the non-coding RNA world of Salmonella. Mol Microbiol 71:1–11

    Article  CAS  PubMed  Google Scholar 

  12. Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong TN, Pan T (2009) RNA folding during transcription: protocols and studies. Methods Enzymol 468:167–193

    Article  CAS  PubMed  Google Scholar 

  14. Zemora G, Waldsich C (2010) RNA folding in living cells. RNA Biol 7:634–641

    Article  PubMed  PubMed Central  Google Scholar 

  15. Woodson SA, Muller JG, Burrows CJ, Rokita SE (1993) A primer extension assay for modification of guanine by Ni(II) complexes. Nucleic Acids Res 21:5524–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ralston CY, Sclavi B, Sullivan M, Deras ML, Woodson SA, Chance MR, Brenowitz M (2000) Time-resolved synchrotron X-ray footprinting and its application to RNA folding. Methods Enzymol 317:353–368

    Article  CAS  PubMed  Google Scholar 

  17. Chevalier C, Geissmann T, Helfer AC, Romby P (2009) Probing mRNA structure and sRNA-mRNA interactions in bacteria using enzymes and lead(II). Methods Mol Biol 540:215–232

    Article  CAS  PubMed  Google Scholar 

  18. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  CAS  PubMed  Google Scholar 

  19. Wakeman CA, Ramesh A, Winkler WC (2009) Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs. J Mol Biol 392:723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22:e90–e98

    Article  CAS  PubMed  Google Scholar 

  22. Xayaphoummine A, Bucher T, Isambert H (2005) Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res 33:W605–W610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jossinet F, Westhof E (2005) Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21:3320–3321

    Article  CAS  PubMed  Google Scholar 

  25. Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27:i85–i93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16:1870–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bindewald E, Kluth T, Shapiro BA (2010) CyloFold: secondary structure prediction including pseudoknots. Nucleic Acids Res 38:W368–W372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cruz JA, Westhof E (2011) Sequence-based identification of 3D structural modules in RNA with RMDetect. Nat Methods 8:513–521

    Article  CAS  PubMed  Google Scholar 

  29. Rother M, Rother K, Puton T, Bujnicki JM (2010) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39:4007–4022

    Article  Google Scholar 

  30. Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2:2608–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Woodson SA (2011) RNA folding pathways and the self-assembly of ribosomes. Acc Chem Res 44:1312–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joseph S, Noller HF (2000) Directed hydroxyl radical probing using iron(II) tethered to RNA. Methods Enzymol 318:175–190

    Article  CAS  PubMed  Google Scholar 

  33. Culver GM, Noller HF (2000) Directed hydroxyl radical probing of RNA from iron(II) tethered to proteins in ribonucleoprotein complexes. Methods Enzymol 318:461–475

    Article  CAS  PubMed  Google Scholar 

  34. Mayford M, Weisblum B (1989) Conformational alterations in the ermC transcript in vivo during induction. EMBO J 8:4307–4314

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53

    Article  CAS  PubMed  Google Scholar 

  36. Balzer M, Wagner R (1998) A chemical modification method for the structural analysis of RNA and RNA-protein complexes within living cells. Anal Biochem 256:240–242

    Article  CAS  PubMed  Google Scholar 

  37. Lindell M, Romby P, Wagner EG (2002) Lead(II) as a probe for investigating RNA structure in vivo. RNA 8:534–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilkinson KA, Vasa SM, Deigan KE, Mortimer SA, Giddings MC, Weeks KM (2009) Influence of nucleotide identity on ribose 2′-hydroxyl reactivity in RNA. RNA 15:1314–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 16:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romby P, Caillet J, Ebel C, Sacerdot C, Graffe M, Eyermann F, Brunel C, Moine H, Ehresmann C, Ehresmann B, Springer M (1996) The expression of E.coli threonyl-tRNA synthetase is regulated at the translational level by symmetrical operator-repressor interactions. EMBO J 15:5976–5987

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mortimer SA, Weeks KM (2009) Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution. Nat Protoc 4:1413–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Romaniuk PJ, de Stevenson IL, Wong HH (1987) Defining the binding site of Xenopus transcription factor IIIA on 5S RNA using truncated and chimeric 5S RNA molecules. Nucleic Acids Res 15:2737–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jahn MJ, Jahn D, Kumar AM, Soll D (1991) Mono Q chromatography permits recycling of DNA template and purification of RNA transcripts after T7 RNA polymerase reaction. Nucleic Acids Res 19:2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  CAS  PubMed  Google Scholar 

  46. Walker SC, Avis JM, Conn GL (2003) General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 31:e82

    Article  PubMed  PubMed Central  Google Scholar 

  47. Torres-Larios A, Dock-Bregeon AC, Romby P, Rees B, Sankaranarayanan R, Caillet J, Springer M, Ehresmann C, Ehresmann B, Moras D (2002) Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Nat Struct Biol 9:343–347

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the team for helpful discussions, and we are grateful to E. Westhof for his constant support. This work was supported by the Centre National de Recherche (CNRS), the Agence Nationale de la Recherche (ANR-09-BLAN-0024-01; ANR-PATHOGENOMICS-ARMSA). D.P. receives support from the CNRS and the Délégation Générale de l’Armement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Romby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fechter, P., Parmentier, D., Wu, Z., Fuchsbauer, O., Romby, P., Marzi, S. (2016). Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo. In: Turner, D., Mathews, D. (eds) RNA Structure Determination. Methods in Molecular Biology, vol 1490. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6433-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6433-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6431-4

  • Online ISBN: 978-1-4939-6433-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics