Skip to main content

Automated RNA 3D Structure Prediction with RNAComposer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1490))

Abstract

RNAs adopt specific structures to perform their activities and these are critical to virtually all RNA-mediated processes. Because of difficulties in experimentally assessing structures of large RNAs using NMR, X-ray crystallography, or cryo-microscopy, there is currently great demand for new high-resolution 3D structure prediction methods. Recently we reported on RNAComposer, a knowledge-based method for the fully automated RNA 3D structure prediction from a user-defined secondary structure. RNAComposer method is especially suited for structural biology users. Since our initial report in 2012, both servers, freely available at http://rnacomposer.ibch.poznan.pl and http://rnacomposer.cs.put.poznan.pl have been often visited. Therefore this chapter provides guidance for using RNAComposer and discusses points that should be considered when predicting 3D RNA structure. An application example presents current scope and limitations of RNAComposer.

*These authors contributed equally to this work.

Dedication: This work is dedicated to Professor David Shugar, one of the pioneers in the field of molecular biophysics, on the occasion of his 100th birthday anniversary.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Spitale RC, Flynn RA, Torre EA, Kool ET, Chang HY (2014) RNA structural analysis by evolving SHAPE chemistry. Wiley Interdiscip Rev RNA 5(6):867–881. doi:10.1002/wrna.1253

    Article  CAS  PubMed  Google Scholar 

  2. Tian S, Cordero P, Kladwang W, Das R (2014) High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states. RNA 20(11):1815–1826. doi:10.1261/rna.044321.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV (2008) Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14(6):1164–1173. doi:10.1261/rna.894608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15(2):189–199. doi:10.1261/rna.1270809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rother M, Rother K, Puton T, Bujnicki JM (2011) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39(10):4007–4022. doi:10.1093/nar/gkq1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci U S A 104(37):14664–14669. doi:10.1073/pnas.0703836104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183):51–55. doi:10.1038/nature06684

    Article  CAS  PubMed  Google Scholar 

  8. Cao S, Chen SJ (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115(14):4216–4226. doi:10.1021/jp112059y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24(17):1951–1952. doi:10.1093/bioinformatics/btn328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao Y, Huang Y, Gong Z, Wang Y, Man J, Xiao Y (2012) Automated and fast building of three-dimensional RNA structures. Sci Rep 2:734. doi:10.1038/srep00734

    Article  PubMed  PubMed Central  Google Scholar 

  11. Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40(14):e112. doi:10.1093/nar/gks339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Popenda M, Blazewicz M, Szachniuk M, Adamiak RW (2008) RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures. Nucleic Acids Res 36(Database issue):D386–D391. doi:10.1093/nar/gkm786

    CAS  PubMed  Google Scholar 

  14. Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW (2010) RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinformatics 11:231. doi:10.1186/1471-2105-11-231

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gan HH, Pasquali S, Schlick T (2003) Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nucleic Acids Res 31(11):2926–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73

    Article  CAS  PubMed  Google Scholar 

  17. Herraez A (2006) Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ 34(4):255–261. doi:10.1002/bmb.2006.494034042644

    Article  CAS  PubMed  Google Scholar 

  18. Childs-Disney JL, Yildirim I, Park H, Lohman JR, Guan L, Tran T, Sarkar P, Schatz GC, Disney MD (2014) Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. ACS Chem Biol 9(2):538–550. doi:10.1021/cb4007387

    Article  CAS  PubMed  Google Scholar 

  19. Mathews DH (2014) RNA secondary structure analysis using RNAstructure. Curr Protoc Bioinformatics 46:12.16.11–12.16.25. doi:10.1002/0471250953.bi1206s46

    Google Scholar 

  20. Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14):e90–e98. doi:10.1093/bioinformatics/btl246

    Article  CAS  PubMed  Google Scholar 

  21. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte Fur Chem 125(2):167–188. doi:10.1007/Bf00818163

    Article  CAS  Google Scholar 

  22. Sergiev PV, Dontsova OA, Bogdanov AA (2001) Chemical methods for the structural study of the ribosome: judgment day. Mol Biol 35(4):472–495. doi:10.1023/A:1010506522897

    Article  CAS  Google Scholar 

  23. Furtig B, Richter C, Wohnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4(10):936–962. doi:10.1002/cbic.200300700

    Article  PubMed  Google Scholar 

  24. Wozniak AK, Nottrott S, Kuhn-Holsken E, Schroder GF, Grubmuller H, Luhrmann R, Seidel CA, Oesterhelt F (2005) Detecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements. RNA 11(10):1545–1554. doi:10.1261/rna.2950605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frolow O, Endeward B, Schiemann O, Prisner TF, Engels JW (2008) Nitroxide spin labeled RNA for long range distance measurements by EPR-PELDOR. Nucleic Acids Symp Ser (Oxf) 52:153–154. doi:10.1093/nass/nrn078

    Article  CAS  Google Scholar 

  26. Huang LL, Serganov A, Patel DJ (2010) Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol Cell 40(5):774–786. doi:10.1016/j.molcel.2010.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 100(21):12057–12062. doi:10.1073/pnas.2133705100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serganov A, Huang L, Patel DJ (2008) Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455(7217):1263–1267. doi:10.1038/nature07326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blouin S, Lafontaine DA (2007) A loop-loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA 13(8):1256–1267. doi:10.1261/Rna.560307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xayaphoummine A, Bucher T, Isambert H (2005) Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res 33(Web Server issue):W605–W610. doi:10.1093/nar/gki447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451

    Article  CAS  PubMed  Google Scholar 

  32. Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9(1):18–20. doi:10.1038/nchembio.1131

    Article  CAS  PubMed  Google Scholar 

  33. Purzycka KJ, Pachulska-Wieczorek K, Adamiak RW (2011) The in vitro loose dimer structure and rearrangements of the HIV-2 leader RNA. Nucleic Acids Res 39(16):7234–7248. doi:10.1093/nar/gkr385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Legiewicz M, Zolotukhin AS, Pilkington GR, Purzycka KJ, Mitchell M, Uranishi H, Bear J, Pavlakis GN, Le Grice SF, Felber BK (2010) The RNA transport element of the murine musD retrotransposon requires long-range intramolecular interactions for function. J Biol Chem 285(53):42097–42104. doi:10.1074/jbc.M110.182840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Purzycka KJ, Legiewicz M, Matsuda E, Eizentstat LD, Lusvarghi S, Saha A, Le Grice SF, Garfinkel DJ (2013) Exploring Ty1 retrotransposon RNA structure within virus-like particles. Nucleic Acids Res 41(1):463–473. doi:10.1093/nar/gks983

    Article  CAS  PubMed  Google Scholar 

  36. Huang Q, Purzycka KJ, Lusvarghi S, Li D, Legrice SF, Boeke JD (2013) Retrotransposon Ty1 RNA contains a 5′-terminal long-range pseudoknot required for efficient reverse transcription. RNA 19(3):320–332. doi:10.1261/rna.035535.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lusvarghi S, Sztuba-Solinska J, Purzycka KJ, Pauly GT, Rausch JW, Grice SF (2013) The HIV-2 Rev-response element: determining secondary structure and defining folding intermediates. Nucleic Acids Res 41(13):6637–6649. doi:10.1093/nar/gkt353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krahenbuhl B, Lukavsky P, Wider G (2014) Strategy for automated NMR resonance assignment of RNA: application to 48-nucleotide K10. J Biomol NMR 59(4):231–240. doi:10.1007/s10858-014-9841-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Center Poland [MAESTRO 2012/06/A/ST6/00384 (to R.W.A)] and Ministry of Science and Higher Education [0492/IP1/2013/72 (to K.J.P.)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard W. Adamiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Biesiada, M., Purzycka, K.J., Szachniuk, M., Blazewicz, J., Adamiak, R.W. (2016). Automated RNA 3D Structure Prediction with RNAComposer. In: Turner, D., Mathews, D. (eds) RNA Structure Determination. Methods in Molecular Biology, vol 1490. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6433-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6433-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6431-4

  • Online ISBN: 978-1-4939-6433-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics