Skip to main content

Analysis of Pathological Activities of CCN Proteins in Fibrotic Diseases: Kidney Fibrosis

  • Protocol
  • First Online:
CCN Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1489))

Abstract

Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis. Transforming growth factor-β (TGF-β) is postulated to play a central role in the development of both fibrotic processes. Extracellular matrix proteins, particularly type I collagen and fibronectin, accumulate in the tissue during renal fibrogenesis. CCN2, also known as connective tissue growth factor (CTGF), is increased in the setting of fibrosis and modulates a number of downstream signaling pathways involved in the fibrogenic properties of TGF-β. Unilateral ureteral obstruction is one of the most widely used models of renal tubulointerstitial fibrosis. Herein, we describe unilateral ureteral obstruction in mice as an animal model of renal fibrosis and methods for immunohistochemical analyses of extracellular matrix proteins and CCN2. In addition, we describe the construction of podocyte-specific CCN2-transgenic mice for analyzing mesangial matrix expansion and glomerulosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656

    Article  PubMed  Google Scholar 

  3. Loeffler I, Wolf G (2014) Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant 29:i37–i45

    Article  CAS  PubMed  Google Scholar 

  4. Farris AB, Colvin RB (2012) Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens 21:289–300

    Article  PubMed  PubMed Central  Google Scholar 

  5. Isaka Y, Tsujie M, Ando Y et al (2000) Transforming growth factor-β1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 58:1885–1892

    Article  CAS  PubMed  Google Scholar 

  6. Cohen AH (1976) Masson’s trichrome stain in the evaluation of renal biopsies. An appraisal. Am J Clin Pathol 65:631–643

    Article  CAS  PubMed  Google Scholar 

  7. Hewitson TD, Smith ER, Samuel CS (2014) Qualitative and quantitative analysis of fibrosis in the kidney. Nephrology 19:721–726

    Article  PubMed  Google Scholar 

  8. Kok HM, Falke LL, Goldschmeding R, Nguyen TQ (2014) Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 10:700–711

    Article  CAS  PubMed  Google Scholar 

  9. Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 107:404–411

    Article  CAS  PubMed  Google Scholar 

  10. Duncan MR, Frazier KS, Abramson S et al (1999) Connective tissue growth factor mediates transforming growth factor β-induced collagen synthesis: down-regulation by cAMP. FASEB J 13:1774–1786

    CAS  PubMed  Google Scholar 

  11. Okada H, Kikuta T, Kobayashi T et al (2005) Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol 16:133–143

    Article  CAS  PubMed  Google Scholar 

  12. Guha M, Xu ZG, Tung D, Lanting L, Natarajan R (2007) Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J 21:3355–3368

    Article  CAS  PubMed  Google Scholar 

  13. Yokoi H, Mukoyama M, Nagae T et al (2004) Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol 15:1430–1440

    Article  CAS  PubMed  Google Scholar 

  14. Abreu JG, Ketpura NI, Reversade BD, Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat Cell Biol 4:599–604

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen TQ, Roestenberg P, van Nieuwenhoven FA et al (2008) CTGF inhibits BMP-7 signaling in diabetic nephropathy. J Am Soc Nephrol 19:2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klahr S, Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283:F861–F875

    Article  PubMed  Google Scholar 

  17. Kaneto H, Morrissey J, McCracken R, Reyes A, Klahr S (1994) Enalapril reduces collagen type IV synthesis and expansion of the interstitium in the obstructed rat kidney. Kidney Int 45:1637–1647

    Article  CAS  PubMed  Google Scholar 

  18. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S (1995) Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 47:1285–1294

    Article  CAS  PubMed  Google Scholar 

  19. Diamond JR, Kees-Folts D, Ding G, Frye JE, Restrepo NC (1994) Macrophages, monocyte chemoattractant peptide-1, and TGF-β1 in experimental hydronephrosis. Am J Physiol 266:F926–F933

    CAS  PubMed  Google Scholar 

  20. Diamond JR, van Goor H, Ding G, Engelmyer E (1995) Myofibroblasts in experimental hydronephrosis. Am J Pathol 146:121–129

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87:297–307

    Article  PubMed  Google Scholar 

  22. LeBleu VS, Taduri G, O'Connell J et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389

    Article  CAS  PubMed  Google Scholar 

  26. Broekema M, Harmsen MC, van Luyn MJ et al (2007) Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol 18:165–175

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Deane JA, Campanale NV, Bertram JF, Ricardo SD (2007) The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells 25:697–706

    Article  CAS  PubMed  Google Scholar 

  28. Boor P, Floege J (2012) The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant 27:3027–3036

    Article  PubMed  Google Scholar 

  29. Wang JF, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE (2007) Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Rep Reg 15:113–121

    Article  Google Scholar 

  30. Yokoi H, Mukoyama M, Mori K et al (2008) Overexpression of connective tissue growth factor in podocytes worsens diabetic nephropathy in mice. Kidney Int 73:446–455

    Article  CAS  PubMed  Google Scholar 

  31. Tong Z, Chen R, Alt DS, Kemper S, Perbal B, Brigstock DR (2009) Susceptibility to liver fibrosis in mice expressing a connective tissue growth factor transgene in hepatocytes. Hepatology 50:939–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panek AN, Posch MG, Alenina N et al (2009) Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PLoS One 4:e6743

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu S, Platteau A, Chen S, McNamara G, Whitsett J, Bancalari E (2010) Conditional overexpression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 42:552–563

    Article  CAS  PubMed  Google Scholar 

  34. Moritani M, Yoshimoto K, Tashiro F et al (1994) Transgenic expression of IL-10 in pancreatic islet A cells accelerates autoimmune insulitis and diabetes in non-obese diabetic mice. Int Immunol 6:1927–1936

    Article  CAS  PubMed  Google Scholar 

  35. Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD (1988) Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A 85:836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology; the Japanese Ministry of Agriculture, Forestry and Fisheries; the Japanese Ministry of Health, Labour and Welfare; and Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Mukoyama M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yokoi, H., Mukoyama, M. (2017). Analysis of Pathological Activities of CCN Proteins in Fibrotic Diseases: Kidney Fibrosis. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 1489. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6430-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6430-7_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6428-4

  • Online ISBN: 978-1-4939-6430-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics