Skip to main content
Book cover

CCN Proteins pp 283–308Cite as

Gene Expression Analysis of CCN Protein in Bone Under Mechanical Stress

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1489))

Abstract

To investigate mechanical-dependent bone remodeling, we had previously applied various types of mechanical loading onto the teeth of rats and mice. In vitro cultured bone cells were then used to elucidate the mechanisms underlying the specific phenomenon revealed by in vivo experiments. This review describes the techniques used to upregulate CCN2 expression in bone cells produced by different types of mechanical stress, such as fluid shear stress and substrate strain in vitro, and compression or tension force in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kruse K, Jülicher F (2005) Oscillations in cell biology. Curr Opin Cell Biol 17:20–26

    Article  CAS  PubMed  Google Scholar 

  2. Zhou XL, Batiza AF, Loukin SH, Palmer CP, Kung C, Saimi Y (2003) The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci U S A 100:7105–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neel PL, Harris RW (1971) Motion-induced inhibition of elongation and induction of dormancy in liquidambar. Science 173:58–59

    Article  CAS  PubMed  Google Scholar 

  4. Ingber DE (2005) Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci U S A 102:11571–11572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  CAS  PubMed  Google Scholar 

  6. Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R, Komuro I (2002) Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39:233–238

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Feng J, Shi L, Niu R, Sun Q, Liu H, Li J, Guo J, Zhu J, Han D (2012) In situ mechanical analysis of cardiomyocytes at nano scales. Nanoscale 4:99–102

    Article  CAS  PubMed  Google Scholar 

  8. Toms SR, Eberhardt AW (2003) A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 123:657–665

    Article  PubMed  Google Scholar 

  9. Fujihara C, Yamada S, Ozaki N, Takeshita N, Kawaki H, Takano-Yamamoto T, Murakami S (2010) Role of mechanical stress-induced glutamate signaling-associated molecules in cytodifferentiation of periodontal ligament cells. J Biol Chem 285:28286–28297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirata H, Tatsumi H, Sokabe M (2008) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121:2795–2804

    Article  CAS  PubMed  Google Scholar 

  11. Takano-Yamamoto T, Soma S, Nakagawa K, Kobayashi Y, Kawakami M, Sakuda M (1991) Comparison of the effects of hydrostatic compressive force on glycosaminoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal septum, and spheno-occipital synchondrosis in vitro. Am J Orthod Dentofacial Orthop 99:448–455

    Article  CAS  PubMed  Google Scholar 

  12. Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 278:50940–50948

    Article  CAS  PubMed  Google Scholar 

  13. Klein-Nulend J, Nijweide PJ, Burger EH (2003) Osteocyte and bone structure. Curr Osteoporos Rep 1:5–10

    Article  PubMed  Google Scholar 

  14. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simons M, Walz G (2006) Polycystic kidney disease: cell division without a c(l)ue? Kidney Int 70:854–864

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J (2003) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 95:2081–2088

    Article  PubMed  Google Scholar 

  17. Wong M, Siegrist M, Goodwin K (2003) Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33:685–693

    Article  CAS  PubMed  Google Scholar 

  18. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13:S101–S112

    CAS  PubMed  Google Scholar 

  20. Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706

    Article  CAS  PubMed  Google Scholar 

  21. Lanyon LE, Goodship AE, Pye CJ, MacFie JH (1982) Mechanically adaptive bone remodelling. J Biomech 15:141–154

    Article  CAS  PubMed  Google Scholar 

  22. Lanyon LE (1987) Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J Biomech 20:1083–1093

    Article  CAS  PubMed  Google Scholar 

  23. Frost HM (1965) Bone biodynamics. Am J Med Sci 249:614

    Article  Google Scholar 

  24. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14:839–849

    Article  CAS  PubMed  Google Scholar 

  25. Gerstenfeld LC (1999) Osteopontin in skeletal tissue homeostasis: An emerging picture of the autocrine/paracrine functions of the extracellular matrix. J Bone Miner Res 14:850–855

    Article  CAS  PubMed  Google Scholar 

  26. Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kubota S, Takigawa M (2007) Role of CCN2/CTGF/Hcs24 in bone growth. Int Rev Cytol 257:1–41

    Article  CAS  PubMed  Google Scholar 

  28. Jiang CG, Lv L, Liu FR, Wang ZN, Na D, Li F, Li JB, Sun Z, Xu HM (2013) Connective tissue growth factor is a positive regulator of epithelial-mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells. Cytokine 61:173–180

    Article  CAS  PubMed  Google Scholar 

  29. Kawaki H, Kubota S, Suzuki A, Suzuki M, Kohsaka K, Hoshi K, Fujii T, Lazar N, Ohgawara T, Maeda T, Perbal B, Takano-Yamamoto T, Takigawa M (2011) Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways. Bone 49:975–989

    Article  CAS  PubMed  Google Scholar 

  30. Nakanishi T, Nishida T, Shimo T, Kobayashi K, Kubo T, Tamatani T, Tezuka K, Takigawa M (2000) Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture. Endocrinology 141:264–273

    CAS  PubMed  Google Scholar 

  31. Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada T, Matsumura T, Ohgawara T, Maeda T, Perbal B, Lyons KM, Takigawa M (2008) Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 23:1751–1764

    Article  CAS  PubMed  Google Scholar 

  32. Kubota S, Takigawa M (2011) The role of CCN2 in cartilage and bone development. J Cell Commun Signal 5:209–217

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hishikawa K, Oemar BS, Nakaki T (2001) Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem 276:16797–16803

    Article  CAS  PubMed  Google Scholar 

  34. Schild C, Trueb B (2002) Mechanical stress is required for high-level expression of connective tissue growth factor. Exp Cell Res 274:83–91

    Article  CAS  PubMed  Google Scholar 

  35. Hoshi K, Kawaki H, Takahashi I, Takeshita N, Seiryu M, Murshid SA, Masuda T, Anada T, Kato R, Kitaura H, Suzuki O, Takano-Yamamoto T (2014) Compressive force-produced CCN2 induces osteocyte apoptosis through ERK1/2 pathway. J Bone Miner Res 29:1244–1257

    Article  CAS  PubMed  Google Scholar 

  36. Honjo T, Kubota S, Kamioka H, Sugawara Y, Ishihara Y, Yamashiro T, Takigawa M, Takano-Yamamoto T (2012) Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress. J Cell Commun Signal 6:225–232

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yamashiro T, Fukunaga T, Kobashi N, Kamioka H, Nakanishi T, Takigawa M, Takano-Yamamoto T (2001) Mechanical stimulation induces CTGF expression in rat osteocytes. J Dent Res 80:461–465

    Article  CAS  PubMed  Google Scholar 

  38. Kuroda S, Balam TA, Sakai Y, Tamamura N, Takano-Yamamoto T (2005) Expression of osteopontin mRNA in odontoclasts revealed by in situ hybridization during experimental tooth movement in mice. J Bone Miner Metab 23:110–113

    Article  PubMed  Google Scholar 

  39. Sakai Y, Balam TA, Kuroda S, Tamamura N, Fukunaga T, Takigawa M, Takano-Yamamoto T (2009) CTGF and apoptosis in mouse osteocytes induced by tooth movement. J Dent Res 88:345–350

    Article  CAS  PubMed  Google Scholar 

  40. Soma S, Iwamoto M, Higuchi Y, Kurisu K (1999) Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 14:546–554

    Article  CAS  PubMed  Google Scholar 

  41. Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, Iwamoto M (2000) Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res 79:1717–1724

    Article  CAS  PubMed  Google Scholar 

  42. Hakami Z, Kitaura H, Kimura K, Ishida M, Sugisawa H, Ida H, Jafari S, Takano-Yamamoto T (2015) Effect of interleukin-4 on orthodontic tooth movement and associated root resorption. Eur J Orthod 37:87–94

    Article  PubMed  Google Scholar 

  43. Takeshita N, Hasegawa M, Seki D, Seiryu M, Miyashita S, Takano I, Oyanagi T, Miyajima Y, Takano-Yamamoto T (2016) In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab 9:26825658

    Google Scholar 

  44. Masuda T, Takahashi I, Anada T, Arai F, Fukuda T, Takano-Yamamoto T, Suzuki O (2008) Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. J Biotechnol 133:231–238

    Article  CAS  PubMed  Google Scholar 

  45. Yamashiro T, Takano-Yamamoto T (2001) Influences of ovariectomy on experimental tooth movement in the rat. J Dent Res 80:1858–1861

    Article  CAS  PubMed  Google Scholar 

  46. Takano-Yamamoto T, Kawakami M, Yamashiro T (1992) Effect of age on the rate of tooth movement in combination with local use of 1,25(OH)2D3 and mechanical force in the rat. J Dent Res 71:1487–1492

    Article  CAS  PubMed  Google Scholar 

  47. Waldo CM, Rothblatt JM (1954) Histologic response to tooth movement in the laboratory rat; procedure and preliminary observations. J Dent Res 33:481–486

    Article  CAS  PubMed  Google Scholar 

  48. Takano-Yamamoto T, Kawakami M, Kobayashi Y, Yamashiro T, Sakuda M (1992) The effect of local application of 1,25-dihydroxycholecalciferol on osteoclast numbers in orthodontically treated rats. J Dent Res 71:53–59

    Article  CAS  PubMed  Google Scholar 

  49. Takimoto A, Kawatsu M, Yoshimoto Y, Kawamoto T, Seiryu M, Takano-Yamamoto T, Hiraki Y, Shukunami C (2015) Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone. Development 142:787–796

    Article  CAS  PubMed  Google Scholar 

  50. Fukunaga T, Yamashiro T, Oya S, Takeshita N, Takigawa M, Takano-Yamamoto T (2003) Connective tissue growth factor mRNA expression pattern in cartilages is associated with their type I collagen expression. Bone 33:911–918

    Article  CAS  PubMed  Google Scholar 

  51. Zheng L, Yamashiro T, Fukunaga T, Balam TA, Takano-Yamamoto T (2005) Bone morphogenetic protein 3 expression pattern in rat condylar cartilage, femoral cartilage and mandibular fracture callus. Eur J Oral Sci 113:318–325

    Article  CAS  PubMed  Google Scholar 

  52. Sugawara Y, Ando R, Kamioka H, Ishihara Y, Murshid SA, Hashimoto K, Kataoka N, Tsujioka K, Kajiya F, Yamashiro T, Takano-Yamamoto T (2008) The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes. Bone 43:19–24

    Article  PubMed  Google Scholar 

  53. Fujisawa T, Hattori T, Takahashi K, Kuboki T, Yamashita A, Takigawa M (1999) Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 125:966–975

    Article  CAS  PubMed  Google Scholar 

  54. Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B (2001) Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem 276:36575–36585

    Article  CAS  PubMed  Google Scholar 

  55. Takano-Yamamoto T, Takemura T, Kitamura Y, Nomura S (1994) Site-specific expression of mRNAs for osteonectin, osteocalcin, and osteopontin revealed by in situ hybridization in rat periodontal ligament during physiological tooth movement. J Histochem Cytochem 42:885–896

    Article  CAS  PubMed  Google Scholar 

  56. Miyawaki S, Forbes DP (1987) The morphologic and biochemical effects of tensile force application to the interparietal suture of the Sprague-Dawley rat. Am J Orthod Dentofacial Orthop 92:123–133

    Article  CAS  PubMed  Google Scholar 

  57. Steenvoorden GP, van de Velde JP, Prahl-Andersen B (1990) The effect of duration and magnitude of tensile mechanical forces on sutural tissue in vivo. Eur J Orthod 12:330–339

    Article  CAS  PubMed  Google Scholar 

  58. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants to T.T.-Y., T.F. and N.T. from Ministry of Education, Culture, Sports, Science and Technology in Japan, Japan Society for the Promotion of Science, and Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruko Takano-Yamamoto D.D.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Takano-Yamamoto, T., Fukunaga, T., Takeshita, N. (2017). Gene Expression Analysis of CCN Protein in Bone Under Mechanical Stress. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 1489. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6430-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6430-7_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6428-4

  • Online ISBN: 978-1-4939-6430-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics