Skip to main content

Resources for Systems Genetics

  • Protocol
  • First Online:
Systems Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1488))

Abstract

A key characteristic of systems genetics is its reliance on populations that vary to a greater or lesser degree in genetic complexity—from highly admixed populations such as the Collaborative Cross and Diversity Outcross to relatively simple crosses such as sets of consomic strains and reduced complexity crosses. This protocol is intended to help investigators make more informed decisions about choices of resources given different types of questions. We consider factors such as costs, availability, and ease of breeding for common scenarios. In general, we recommend using complementary resources and minimizing depth of resampling of any given genome or strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams EG, Auwerx J (2015) The convergence of systems and reductionist approaches in complex trait analysis. Cell 162:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dietrich WF, Copeland NG, Gilbert DJ, Miller JC, Jenkins NA et al (1995) Mapping the mouse genome: current status and future prospects. Proc Natl Acad Sci U S A 92:10849–10853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petkov PM, Cassell MA, Sargent EE, Donnelly CJ, Robinson P et al (2004) Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics 83:902–911

    Article  CAS  PubMed  Google Scholar 

  4. Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol 2:RESEARCH0046

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, Mott R, Flint J (2006) A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 4:e395

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang H, Bell TA, Churchill GA, de Villena Pardo-Manuel F (2007) On the subspecific origin of the laboratory mouse. Nat Genet 39:1100–1107

    Article  CAS  PubMed  Google Scholar 

  7. Morgan AP, Fu CP, Kao CY, Welsh CE, Didion JP et al (2015) The mouse universal genotyping array: from substrains to subspecies. G3 (Bethesda) 6:263–279

    Article  PubMed Central  Google Scholar 

  8. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    Article  CAS  PubMed  Google Scholar 

  11. Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, Flint J (1999) High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet 21:305–318

    Article  CAS  PubMed  Google Scholar 

  12. Complex Trait Consortium (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4:911–916

    Article  Google Scholar 

  13. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD et al (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  CAS  PubMed  Google Scholar 

  14. Singer JB, Hill AE, Burrage LC, Olszens KR, Song J et al (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    Article  CAS  PubMed  Google Scholar 

  15. Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    Article  CAS  PubMed  Google Scholar 

  16. Broman KW (2005) The genomes of recombinant inbred lines. Genetics 169:1133–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Threadgill DW, Hunter KW, Williams RW (2002) Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mamm Genome 13:175–178

    Article  CAS  PubMed  Google Scholar 

  18. Malmanger B, Lawler M, Coulombe S, Murray R, Cooper S, Polyakov Y, Belknap J, Hitzemann R (2006) Further studies on using multiple-cross mapping (MCM) to map quantitative trait loci. Mamm Genome 17:1193–1204

    Article  PubMed  Google Scholar 

  19. Ghazalpour A, Rau CD, Farber CR, Bennett BJ, Orozco LD et al (2012) Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mamm Genome 23:680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E et al (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams EG, Mouchiroud L, Frochaux M, Pandey A, Andreux PA et al (2014) An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PLoS Genet 10:e1004673

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Pandey AK, Mulligan MK, Williams EG, Mozhui K et al (2016) Joint mouse-human phenome-wide association to test gene function and disease risk. Nat Commun 7:10464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8:833–835

    Article  CAS  PubMed  Google Scholar 

  24. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furlotte NA, Kang EY, Van Nas A, Farber CR, Lusis AJ et al (2012) Increasing association mapping power and resolution in mouse genetic studies through the use of meta-analysis for structured populations. Genetics 191:959–967

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koutnikova H, Markku L, Lu L, Combe R, Paananen J et al (2009) Identification of UBP1 as a critical blood pressure determinant. PLoS Genet 5:e1000591

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mozhui K, Wang X, Chen J, Mulligan MK, Li Z et al (2011) Genetic regulation of Nrxn1 expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl Psychiatry 1:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Subramanian S, Tus K, Li QZ, Wang A, Tian XH et al (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 103:9970–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hunter KW, Crawford NP (2008) The future of mouse QTL mapping to diagnose disease in mice in the age of whole-genome association studies. Annu Rev Genet 42:131–141

    Article  CAS  PubMed  Google Scholar 

  30. Hu Y, Wu G, Rusch M, Lukes L, Buetow KH et al (2012) Integrated cross-species transcriptional network analysis of metastatic susceptibility. Proc Natl Acad Sci U S A 109:3184–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morahan G (2012) Insights into type 1 diabetes provided by genetic analyses. Curr Opin Endocrinol Diabetes Obes 19:263–270

    Article  CAS  PubMed  Google Scholar 

  32. Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  33. Fisher R (1918) The correlation between relatives on the supposition of Mendelian inheritance. Phil Trans R Soc Edin 52:399–433

    Article  Google Scholar 

  34. Wright S (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  35. Lenarcic AB, Svenson KL, Churchill GA, Valdar W (2012) A general Bayesian approach to analyzing diallel crosses of inbred strains. Genetics 190:413–435

    Article  PubMed  PubMed Central  Google Scholar 

  36. Airey DW, Lu L, Shou S, Williams RW (2002) Genetic sources of individual differences in cerebellum. Cerebellum 1:233–240

    Article  PubMed  Google Scholar 

  37. Crowley JJ, Kim Y, Lenarcic AB, Quackenbush CR, Barrick CJ et al (2014) Genetics of adverse reactions to haloperidol in a mouse diallel: a drug-placebo experiment and Bayesian causal analysis. Genetics 196:321–347

    Article  CAS  PubMed  Google Scholar 

  38. Percival CJ, Liberton DK, Pardo-Manuel de Villena F, Spritz R, Marcucio R et al (2016) Genetics of murine craniofacial morphology: diallel analysis of the eight founders of the Collaborative Cross. J Anat 228:96–112

    Article  PubMed  Google Scholar 

  39. Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S et al (2010) Genotype to phenotype: a complex problem. Science 328:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J et al (2015) Genetic architecture of atherosclerosis in mice: a systems genetics analysis of common inbred strains. PLoS Genet 11:e1005711

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bogue MA, Peters LL, Paigen B, Korstanje R, Yuan R et al (2014) Accessing data resources in the mouse phenome database for genetic analysis of murine life span and health span. J Gerontol A Biol Sci Med Sci 71:170–177

    Article  PubMed  PubMed Central  Google Scholar 

  42. Keane TM, Goodstadt L, Danecek P, White MA, Wong K et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bogue MA, Grubb SC (2004) The mouse phenome project. Genetica 122:71–74

    Article  CAS  PubMed  Google Scholar 

  44. Kumar V, Kim K, Joseph C, Kourrich S, Yoo SH et al (2013) C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 (Cyfip2) regulates cocaine response. Science 342:1508–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heiker JT, Kunath A, Kosacka J, Flehmig G, Knigge A et al (2014) Identification of genetic loci associated with different responses to high-fat diet-induced obesity in C57BL/6N and C57BL/6J substrains. Physiol Genomics 46:377–384

    Article  CAS  PubMed  Google Scholar 

  46. Khisti RT, Wolstenholme J, Shelton KL, Miles MF (2006) Characterization of the ethanol-deprivation effect in substrains of C57BL/6 mice. Alcohol 40:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mulligan MK, Ponomarev I, Boehm SL II, Owen JA, Levin PS et al (2008) Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav 7:677–689

    Article  CAS  PubMed  Google Scholar 

  48. Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V et al (2013) A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14:R82

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kirkpatrick SL, Bryant CD (2015) Behavioral architecture of opioid reward and aversion in C57BL/6 substrains. Front Behav Neurosci 8:450

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rosen GD, Azoulay NG, Griffin EG, Newbury A, Koganti L et al (2013) Bilateral subcortical heterotopia with partial callosal agenesis in a mouse mutant. Cereb Cortex 23:859–872

    Article  CAS  PubMed  Google Scholar 

  51. Cardin S, Scott-Boyer MP, Praktiknjo S, Jeidane S, Picard S et al (2014) Differences in cell-type-specific responses to angiotensin II explain cardiac remodeling differences in C57BL/6 mouse substrains. Hypertension 64:1040–1046

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Mulligan MK, Wang X, Miles MF, Lu L et al (2010) A transposon in Comt generates mRNA variants and causes widespread expression and behavioral differences among mice. PLoS One 5:e12181

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gregorova S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V et al (2008) Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res 18:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buchner DA, Nadeau JH (2015) Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 25:775–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis RC, Schadt EE, Smith DJ, Hsieh EW, Cervino AC et al (2005) A genome-wide set of congenic mouse strains derived from DBA/2J on a C57BL/6J background. Genomics 86:259–270

    Article  CAS  PubMed  Google Scholar 

  56. Bryant CD, Kole LA, Guido MA, Sokoloff G, Palmer AA (2012) Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis. Genes Brain Behav 11:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Williams RW (1999) A targeted screen to detect recessive mutations that have quantitative effects. Mamm Genome 10:734–738

    Article  CAS  PubMed  Google Scholar 

  58. Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289–301

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  CAS  PubMed  Google Scholar 

  60. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K et al (2007) An aging interventions testing program: study design and interim report. Aging Cell 6:565–575

    Article  CAS  PubMed  Google Scholar 

  62. Bailey DW (1971) Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11:325–327

    Article  CAS  PubMed  Google Scholar 

  63. Taylor BA, Heiniger HJ, Meier H (1973) Genetic analysis of resistance to cadmium-induced testicular damage in mice. Proc Soc Exp Biol Med 143:629–633

    Article  CAS  PubMed  Google Scholar 

  64. Gora-Maslak G, McClearn GE, Crabbe JC, Phillips TJ, Belknp JK et al (1992) Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology. Psychopharmacology 104:413–424

    Article  Google Scholar 

  65. Belknap JK (1998) Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav Genet 28:29–38

    Article  CAS  PubMed  Google Scholar 

  66. Pandey A, Williams RW (2014) Genetics of gene expression in the CNS. Int Rev Neurobiol 116:195–231

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mulligan MK, Mozhui K, Prins P, Williams RW (2016) GeneNetwork – A toolbox for systems genetics. Methods Mol Biol (this volume)

    Google Scholar 

  68. Yalcin B, Flint J, Mott R (2005) Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 171:673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Williams RW, Strom RC, Goldowitz D (1998) Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J Neurosci 18:138–146

    CAS  PubMed  Google Scholar 

  70. Roberts A, Pardo-Manuel de Villena F, Wang W, McMillan L, Threadgill DW (2007) The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mamm Genome 18:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hrbek T, de Brito RA, Wang B, Pletscher LS, Cheverud JM (2006) Genetic characterization of a new set of recombinant inbred lines (LGXSM) formed from the inter-cross of SM/J and LG/J inbred mouse strains. Mamm Genome 17:417–429

    Article  CAS  PubMed  Google Scholar 

  73. Rasmussen AL, Okumura A, Ferris MT, Green R, Feldmann F et al (2014) Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science 346:987–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hegmann JP, Possidente B (1981) Estimating genetic correlations from inbred strains. Behav Genet 11:103–114

    Article  CAS  PubMed  Google Scholar 

  75. Williams RW, Strom RC, Rice DS, Goldowitz D (1996) Genetic and environmental control of variation in retinal ganglion cell number in mice. J Neurosci 16:7193–7205

    CAS  PubMed  Google Scholar 

  76. Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D et al (2009) Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource. Front Neurosci 3:55

    PubMed  PubMed Central  Google Scholar 

  77. Lynch CJ (1969) The so-called Swiss mouse. Lab Anim Care 19:214–220

    CAS  PubMed  Google Scholar 

  78. Chia R, Achilli F, Festing MF, Fisher EM (2005) The origins and uses of mouse outbred stocks. Nat Genet 37:1181–1186

    Article  CAS  PubMed  Google Scholar 

  79. Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J et al (2010) Commercially available outbred mice for genome-wide association studies. PLoS Genet 6:e1001085

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kakihana R, Brown DR, McClearn GE, Tabershaw IR (1966) Brain sensitivity to alcohol in inbred mouse strains. Science 154:1574–1575

    Article  CAS  PubMed  Google Scholar 

  81. Holmes RS, Petersen DR, Deitrich RA (1986) Biochemical genetic variants in mice selectively bred for sensitivity or resistance to ethanol-induced sedation. Anim Genet 17:235–244

    Article  CAS  PubMed  Google Scholar 

  82. Hitzemann B, Dains K, Kanes S, Hitzemann R (1994) Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J Pharmacol Exp Ther 271:969–976

    CAS  PubMed  Google Scholar 

  83. Valdar W, Soberg LC, Gaugiuier D, Burnett S, Klenerman P et al (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  CAS  PubMed  Google Scholar 

  84. Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The diversity outbred mouse population. Mamm Genome 23:713–718

    Article  PubMed  PubMed Central  Google Scholar 

  85. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R et al (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190:437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Graham JB, Thomas S, Swarts J, McMillan AA, Ferris MT et al (2015) Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes. MBio 6:e00493–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ et al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rat Genome Sequencing and Mapping Consortium, Baud A, Hermsen R, Guryev V, Stridh P et al (2013) Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat Genet 45:767–775

    Article  Google Scholar 

  89. Anderson MG, Smith RS, Hawes NL, Zabaleta A, Chang B, Wiggs JL, John SW (2002) Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30:81–85

    Article  CAS  PubMed  Google Scholar 

  90. Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF et al (2012) Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 150:1287–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rönnegård L, Valdar W (2011) Detecting major genetic loci controlling phenotypic variability in experimental crosses. Genetics 188:435–447

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the support of the UT Center for Integrative and Translational Genomics, and funds from the UT-ORNL Governor’s Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Williams Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Williams, R.W., Williams, E.G. (2017). Resources for Systems Genetics. In: Schughart, K., Williams, R. (eds) Systems Genetics. Methods in Molecular Biology, vol 1488. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6427-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6427-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6425-3

  • Online ISBN: 978-1-4939-6427-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics