Skip to main content

High-Throughput Analysis of Mammalian Receptor Tyrosine Kinase Activation in Yeast Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

Tyrosine phosphorylation is an essential posttranslational modification in intracellular signaling molecules. Since tyrosine phosphorylation occurs in less than 0.1 % of all phosphorylated amino acids in mammalian cells, it is difficult to detect the nascent phosphotyrosine at a high signal-to-noise ratio due to high intracellular backgrounds (i.e., unexpected crosstalks among endogenous signaling molecules). In order to address this issue, we reconstituted the mammalian signaling pathway involving an extracellular ligand and a receptor tyrosine kinase (RTK) in Saccharomyces cerevisiae, a lower eukaryote that lacks endogenous tyrosine kinases. In this chapter, we describe a method for high-throughput analysis of ligand–receptor interaction by combining the yeast cell-surface display technique with an automated single-cell analysis and isolation system. Yeast cells coexpressing the cell-wall-anchored form of the human epidermal growth factor (EGF) and the human EGF receptor (EGFR) fused with a signal peptide at the N terminus facilitated the interaction of EGF with EGFR in an autocrine manner, followed by EGFR oligomerization and subsequent autophosphorylation. Furthermore, yeast cells expressing cell-wall-anchored forms of a conformationally constrained random peptide library instead of EGF are treated with a fluorophore-labeled anti-phosphorylated EGFR antibody and then subjected to the automated single-cell analysis and isolation system. The yeast cells with the highest level of fluorescence were shown to display novel and efficient EGFR agonistic peptides. Thus, our yeast display technique serves as a quantitative measurement for RTK activation, which is applicable to high-throughput de novo screening of RTK agonistic peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yoshimoto N, Kida A, Jie X et al (2013) An automated system for high-throughput single cell-based breeding. Sci Rep 3:1191

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yoshimoto N, Kuroda S (2014) Single-cell-based breeding: rational strategy for the establishment of cell lines from a single cell with the most favorable properties. J Biosci Bioeng 117:394–400

    Article  CAS  PubMed  Google Scholar 

  3. Yoshimoto N, Tatematsu K, Iijima M et al (2014) High-throughput de novo screening of receptor agonists with an automated single-cell analysis and isolation system. Sci Rep 4:4242

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cooper JA, Sefton BM, Hunter T (1983) Detection and quantification of phosphotyrosine in proteins. Methods Enzymol 99:387–402

    Article  CAS  PubMed  Google Scholar 

  5. Velloso LA, Folli F, Sun XJ et al (1996) Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A 93:12490–12495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Costa-Pereira AP, Tininini S, Strobl B et al (2002) Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc Natl Acad Sci U S A 99:8043–8047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manning G, Plowman GD, Hunter T et al (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520

    Article  CAS  PubMed  Google Scholar 

  8. Hood L, Heath JR, Phelps ME et al (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306:640–643

    Article  CAS  PubMed  Google Scholar 

  9. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  10. Sachse R, Wüstenhagen D, Šamalíková M et al (2013) Synthesis of membrane proteins in eukaryotic cell-free systems. Eng Life Sci 13:39–48

    Article  CAS  Google Scholar 

  11. El-Haggar R, Kamikawa K, Machi K et al (2010) Molecular design of small organic molecules based on structural information for a conformationally constrained peptide that binds to G-CSF receptor. Bioorg Med Chem Lett 20:1169–1172

    Article  CAS  PubMed  Google Scholar 

  12. Johns TG, Luwor RB, Murone C et al (2003) Antitumor efficacy of cytotoxic drugs and the monoclonal antibody 806 is enhanced by the EGF receptor inhibitor AG1478. Proc Natl Acad Sci U S A 100:15871–15876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sato N, Matsumoto T, Ueda M et al (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60:469–474

    Article  CAS  PubMed  Google Scholar 

  14. Busti S, Sacco E, Martegani E et al (2008) Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. Curr Genet 53:153–162

    Article  CAS  PubMed  Google Scholar 

  15. Ito H, Fukuda Y, Murata K et al (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  CAS  PubMed  Google Scholar 

  17. Hill J, Donald KA, Griffiths DE (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 25:5791

    Article  Google Scholar 

  18. Gietz D, St Jean A, Woods RA et al (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 25:1425

    Article  Google Scholar 

  19. Schreuder MP, Brekelmans S, van den Ende H et al (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9:399–409

    Article  CAS  PubMed  Google Scholar 

  20. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Yoshimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yoshimoto, N., Kuroda, S. (2017). High-Throughput Analysis of Mammalian Receptor Tyrosine Kinase Activation in Yeast Cells. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics