Skip to main content

Modeling RASopathies with Genetically Modified Mouse Models

  • Protocol
  • First Online:
Book cover ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

The RAS/MAPK signaling pathway plays key roles in development, cell survival and proliferation, as well as in cancer pathogenesis. Molecular genetic studies have identified a group of developmental syndromes, the RASopathies, caused by germ line mutations in this pathway. The syndromes included within this classification are neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML, formerly known as LEOPARD syndrome), Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS, NF1-like syndrome), capillary malformation–arteriovenous malformation syndrome (CM-AVM), and hereditary gingival fibromatosis (HGF) type 1. Although these syndromes present specific molecular alterations, they are characterized by a large spectrum of functional and morphological abnormalities, which include heart defects, short stature, neurocognitive impairment, craniofacial malformations, and, in some cases, cancer predisposition. The development of genetically modified animals, such as mice (Mus musculus), flies (Drosophila melanogaster), and zebrafish (Danio rerio), has been instrumental in elucidating the molecular and cellular bases of these syndromes. Moreover, these models can also be used to determine tumor predisposition, the impact of different genetic backgrounds on the variable phenotypes found among the patients and to evaluate preventative and therapeutic strategies. Here, we review a wide range of genetically modified mouse models used in the study of RASopathies and the potential application of novel technologies, which hopefully will help us resolve open questions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes Cancer 2:344–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  CAS  PubMed  Google Scholar 

  4. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  5. Cawthon RM, O'Connell P, Buchberg AM et al (1990) Identification and characterization of transcripts from the neurofibromatosis 1 region: the sequence and genomic structure of EVI2 and mapping of other transcripts. Genomics 7:555–565

    Article  CAS  PubMed  Google Scholar 

  6. Ratner N, Miller SJ (2015) A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 15:290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aoki Y, Niihori T, Kawame H et al (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37:1038–1040

    Article  CAS  PubMed  Google Scholar 

  8. Brems H, Chmara M, Sahbatou M et al (2007) Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 39:1120–1126

    Article  CAS  PubMed  Google Scholar 

  9. Wakioka T, Sasaki A, Kato R et al (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412:647–651

    Article  CAS  PubMed  Google Scholar 

  10. Hart TC, Zhang Y, Gorry MC et al (2002) A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am J Hum Genet 70:943–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eerola I, Boon LM, Mulliken JB et al (2003) Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 73:1240–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aoki Y, Niihori T, Inoue SI et al (2016) Recent advances in RASopathies. J Hum Genet 61(1):33–39. doi:10.1038/jhg.2015.114 [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  13. Tartaglia M, Gelb BD, Zenker M (2011) Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab 25:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aoki Y, Niihori T, Banjo T et al (2013) Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93:173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flex E, Jaiswal M, Pantaleoni F et al (2014) Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet 23:4315–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen PC, Yin J, Yu HW et al (2014) Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proc Natl Acad Sci U S A 111:11473–11478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vissers LE, Bonetti M, Paardekooper Overman J et al (2015) Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome. Eur J Hum Genet 23:317–324

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto GL, Aguena M, Gos M et al (2015) Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet 52:413–421

    Article  CAS  PubMed  Google Scholar 

  19. Roberts A, Allanson J, Jadico SK et al (2006) The cardiofaciocutaneous syndrome. J Med Genet 43:833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarkozy A, Digilio MC, Dallapiccola B (2008) Leopard syndrome. Orphanet J Rare Dis 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jindal GA, Goyal Y, Burdine RD et al (2015) RASopathies: unraveling mechanisms with animal models. Dis Model Mech 8:1167

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bertola DR, Pereira AC, de Oliveira PS et al (2004) Clinical variability in a Noonan syndrome family with a new PTPN11 gene mutation. Am J Med Genet A 130A:378–383

    Article  PubMed  Google Scholar 

  24. Zenker M, Voss E, Reis A (2007) Mild variable Noonan syndrome in a family with a novel PTPN11 mutation. Eur J Med Genet 50:43–47

    Article  PubMed  Google Scholar 

  25. Bentires-Alj M, Kontaridis MI, Neel BG (2006) Stops along the RAS pathway in human genetic disease. Nat Med 12:283–285

    Article  CAS  PubMed  Google Scholar 

  26. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  27. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bradley A, Evans M, Kaufman MH et al (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  CAS  PubMed  Google Scholar 

  29. Lin FL, Sperle K, Sternberg N (1984) Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 4:1020–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smithies O, Gregg RG, Boggs SS et al (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234

    Article  CAS  PubMed  Google Scholar 

  31. Thomas KR, Capecchi MR (1986) Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature 324:34–38

    Article  CAS  PubMed  Google Scholar 

  32. Wong EA, Capecchi MR (1986) Analysis of homologous recombination in cultured mammalian cells in transient expression and stable transformation assays. Somat Cell Mol Genet 12:63–72

    Article  CAS  PubMed  Google Scholar 

  33. Bouabe H, Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064:315–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  CAS  PubMed  Google Scholar 

  35. Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 1996(93): 6191–6196

    Article  Google Scholar 

  36. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang H, Wang H, Shivalila CS et al (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brannan CI, Perkins AS, Vogel KS et al (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029

    Article  CAS  PubMed  Google Scholar 

  40. Jacks T, Shih TS, Schmitt EM et al (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7:353–361

    Article  CAS  PubMed  Google Scholar 

  41. Lakkis MM, Epstein JA (1998) Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development 125:4359–4367

    CAS  PubMed  Google Scholar 

  42. Yu X, Chen S, Potter OL et al (2005) Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone 36:793–802

    Article  CAS  PubMed  Google Scholar 

  43. Brown JA, Emnett RJ, White CR et al (2010) Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum Mol Genet 19:4515–4528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silva AJ, Frankland PW, Marowitz Z et al (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 15:281–284

    Article  CAS  PubMed  Google Scholar 

  45. van der Vaart T, van Woerden GM, Elgersma Y et al (2011) Motor deficits in neurofibromatosis type 1 mice: the role of the cerebellum. Genes Brain Behav 10:404–409

    Article  PubMed  Google Scholar 

  46. Shilyansky C, Karlsgodt KH, Cummings DM et al (2010) Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S A 107:13141–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Molosh AI, Johnson PL, Spence JP et al (2014) Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat Neurosci 17: 1583–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gitler AD, Zhu Y, Ismat FA et al (2003) Nf1 has an essential role in endothelial cells. Nat Genet 33:75–79

    Article  CAS  PubMed  Google Scholar 

  49. Xu J, Ismat FA, Wang T et al (2009) Cardiomyocyte-specific loss of neurofibromin promotes cardiac hypertrophy and dysfunction. Circ Res 105:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang W, Nyman JS, Ono K et al (2011) Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Hum Mol Genet 20:3910–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang W, Rhodes SD, Zhao L et al (2011) Primary osteopathy of vertebrae in a neurofibromatosis type 1 murine model. Bone 48: 1378–1387

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rhodes SD, Wu X, He Y et al (2013) Hyperactive transforming growth factor-beta1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. J Bone Miner Res 28:2476–2489

    Article  CAS  PubMed  Google Scholar 

  53. Zhu Y, Romero MI, Ghosh P et al (2001) Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15:859–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Kim E, Wang X et al (2012) ERK inhibition rescues defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities. Cell 150:816–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui Y, Costa RM, Murphy GG et al (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Costa RM, Yang T, Huynh DP et al (2001) Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat Genet 27:399–405

    Article  CAS  PubMed  Google Scholar 

  57. Wu J, Williams JP, Rizvi TA et al (2008) Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Le LQ, Liu C, Shipman T et al (2011) Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 71:4686–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mayes DA, Rizvi TA, Cancelas JA et al (2011) Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res 71:4675–4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng H, Chang L, Patel N et al (2008) Induction of abnormal proliferation by nonmyelinating Schwann cells triggers neurofibroma formation. Cancer Cell 13:117–128

    Article  CAS  PubMed  Google Scholar 

  61. Chen Z, Liu C, Patel AJ et al (2014) Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell 26:695–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Listernick R, Louis DN, Packer RJ et al (1997) Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 41:143–149

    Article  CAS  PubMed  Google Scholar 

  63. Bajenaru ML, Zhu Y, Hedrick NM et al (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22:5100–5113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bajenaru ML, Hernandez MR, Perry A et al (2003) Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res 63:8573–8577

    CAS  PubMed  Google Scholar 

  65. Solga AC, Gianino SM, Gutmann DH (2014) NG2-cells are not the cell of origin for murine neurofibromatosis-1 (Nf1) optic glioma. Oncogene 33:289–299

    Article  CAS  PubMed  Google Scholar 

  66. Zhu Y, Harada T, Liu L et al (2005) Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132:5577–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. da Lee Y, Gianino SM, Gutmann DH (2012) Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell 22:131–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chang T, Krisman K, Theobald EH et al (2013) Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest 123:335–339

    Article  CAS  PubMed  Google Scholar 

  69. Cichowski K, Shih TS, Schmitt E et al (1999) Mouse models of tumor development in neurofibromatosis type 1. Science 286:2172–2176

    Article  CAS  PubMed  Google Scholar 

  70. Vogel KS, Klesse LJ, Velasco-Miguel S et al (1999) Mouse tumor model for neurofibromatosis type 1. Science 286:2176–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Joseph NM, Mosher JT, Buchstaller J et al (2008) The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keng VW, Rahrmann EP, Watson AL et al (2012) PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res 72:3405–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dodd RD, Mito JK, Eward WC et al (2013) NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Mol Cancer Ther 12:1906–1917

    Article  CAS  PubMed  Google Scholar 

  74. Zhu Y, Guignard F, Zhao D et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005(8):119–130

    Article  CAS  Google Scholar 

  75. Wiesner SM, Geurts JL, Diers MD et al (2011) Nf1 mutant mice with p19ARF gene loss develop accelerated hematopoietic disease resembling acute leukemia with a variable phenotype. Am J Hematol 86:579–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li W, Cui Y, Kushner SA et al (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15:1961–1967

    Article  CAS  PubMed  Google Scholar 

  77. Acosta MT, Kardel PG, Walsh KS et al (2011) Lovastatin as treatment for neurocognitive deficits in neurofibromatosis type 1: phase I study. Pediatr Neurol 45:241–245

    Article  PubMed  Google Scholar 

  78. Krab LC, de Goede-Bolder A, Aarsen FK et al (2008) Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial. JAMA 300:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van der Vaart T, Plasschaert E, Rietman AB et al (2013) Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurol 12:1076–1083

    Article  PubMed  CAS  Google Scholar 

  80. Kim E, Wang Y, Kim SJ et al (2014) Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1. Elife 3:e05151

    PubMed Central  Google Scholar 

  81. Jessen WJ, Miller SJ, Jousma E et al (2013) MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 123:340–347

    Article  CAS  PubMed  Google Scholar 

  82. Jousma E, Rizvi TA, Wu J et al (2015) Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of Neurofibromatosis type 1. Pediatr Blood Cancer 62:1709–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Watson AL, Anderson LK, Greeley AD et al (2014) Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of Schwann cell tumors reduces tumor grade and multiplicity. Oncotarget 5:1502–1514

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li H, Zhao X, Yan X et al (2016) Runx1 contributes to neurofibromatosis type 1 neurofibroma formation. Oncogene 35(11):1468–1474. doi:10.1038/onc.2015.207

    Article  CAS  PubMed  Google Scholar 

  85. Roberts AE, Allanson JE, Tartaglia M et al (2013) Noonan syndrome. Lancet 381:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Araki T, Mohi MG, Ismat FA et al (2004) Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 10:849–857

    Article  CAS  PubMed  Google Scholar 

  87. Xu D, Wang S, Yu WM et al (2010) A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood 116:3611–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Araki T, Chan G, Newbigging S et al (2009) Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A 106:4736–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee YS, Ehninger D, Zhou M et al (2014) Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci 17:1736–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakamura T, Gulick J, Pratt R et al (2009) Noonan syndrome is associated with enhanced pERK activity, the repression of which can prevent craniofacial malformations. Proc Natl Acad Sci U S A 106:15436–15441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krenz M, Gulick J, Osinska HE et al (2008) Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proc Natl Acad Sci U S A 105:18930–18935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakamura T, Colbert M, Krenz M et al (2007) Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. J Clin Invest 117:2123–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ehrman LA, Nardini D, Ehrman S et al (2014) The protein tyrosine phosphatase Shp2 is required for the generation of oligodendrocyte progenitor cells and myelination in the mouse telencephalon. J Neurosci 34:3767–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang S, Yu WM, Zhang W et al (2009) Noonan syndrome/leukemia-associated gain-of-function mutations in SHP-2 phosphatase (PTPN11) enhance cell migration and angiogenesis. J Biol Chem 284:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pages G, Guerin S, Grall D et al (1999) Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286:1374–1377

    Article  CAS  PubMed  Google Scholar 

  96. Saba-El-Leil MK, Vella FD, Vernay B et al (2003) An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 4:964–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen PC, Wakimoto H, Conner D et al (2010) Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome-associated Sos1 mutation. J Clin Invest 120:4353–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu X, Simpson J, Hong JH et al (2011) MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1(L613V) mutation. J Clin Invest 121:1009–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hernandez-Porras I, Fabbiano S, Schuhmacher AJ et al (2014) K-RasV14I recapitulates Noonan syndrome in mice. Proc Natl Acad Sci U S A 111:16395–16400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hernandez-Porras I, Jimenez-Catalan B, Schuhmacher AJ (2015) The impact of genetic backgrounds in the K-RasV14I-induced Noonan syndrome. Rare Dis 3:e1045169

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hanna N, Montagner A, Lee WH et al (2006) Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Lett 580: 2477–2482

    Article  CAS  PubMed  Google Scholar 

  102. Tartaglia M, Martinelli S, Stella L et al (2006) Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 78: 279–290

    Article  CAS  PubMed  Google Scholar 

  103. Kontaridis MI, Swanson KD, David FS et al (2006) PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem 281:6785–6792

    Article  CAS  PubMed  Google Scholar 

  104. Yu ZH, Xu J, Walls CD et al (2013) Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 288:10472–10482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu ZH, Zhang RY, Walls CD et al (2014) Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry 53:4136–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Saxton TM, Henkemeyer M, Gasca S et al (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 16:2352–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bard-Chapeau EA, Yuan J, Droin N et al (2006) Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection. Mol Cell Biol 26:4664–4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fornaro M, Burch PM, Yang W et al (2006) SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J Cell Biol 175:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hagihara K, Zhang EE, Ke YH et al (2009) Shp2 acts downstream of SDF-1alpha/CXCR4 in guiding granule cell migration during cerebellar development. Dev Biol 334:276–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ke Y, Lesperance J, Zhang EE et al (2006) Conditional deletion of Shp2 in the mammary gland leads to impaired lobulo-alveolar outgrowth and attenuated Stat5 activation. J Biol Chem 281:34374–34380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ke Y, Zhang EE, Hagihara K et al (2007) Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 27:6706–6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Krajewska M, Banares S, Zhang EE et al (2008) Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase. Am J Pathol 172:1312–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nguyen TV, Ke Y, Zhang EE et al (2006) Conditional deletion of Shp2 tyrosine phosphatase in thymocytes suppresses both pre-TCR and TCR signals. J Immunol 177:5990–5996

    Article  CAS  PubMed  Google Scholar 

  114. Zhang EE, Chapeau E, Hagihara K et al (2004) Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A 101:16064–16069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang SS, Hao E, Yu J et al (2009) Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells. Proc Natl Acad Sci U S A 106:7531–7536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kamiya N, Shen J, Noda K et al (2015) SHP2-deficiency in chondrocytes deforms orofacial cartilage and ciliogenesis in mice. J Bone Miner Res 30:2028–2032

    Article  CAS  PubMed  Google Scholar 

  117. Bowen ME, Ayturk UM, Kurek KC et al (2014) SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates. PLoS Genet 10:e1004364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kim HK, Feng GS, Chen D et al (2014) Targeted disruption of Shp2 in chondrocytes leads to metachondromatosis with multiple cartilaginous protrusions. J Bone Miner Res 29:761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim HK, Aruwajoye O, Sucato D et al (2013) Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and kyphosis in mice. Spine (Phila, PA, 1976) 38:E1307–E1312

    Article  Google Scholar 

  120. Yang W, Wang J, Moore DC et al (2013) Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 499:491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lapinski PE, Meyer MF, Feng GS et al (2013) Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice. Dis Model Mech 6:1448–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Princen F, Bard E, Sheikh F et al (2009) Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Mol Cell Biol 29:378–388

    Article  CAS  PubMed  Google Scholar 

  123. Kontaridis MI, Yang W, Bence KK et al (2008) Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117:1423–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Puri P, Phillips BT, Suzuki H et al (2014) The transition from stem cell to progenitor spermatogonia and male fertility requires the SHP2 protein tyrosine phosphatase. Stem Cells 32:741–753

    Article  CAS  PubMed  Google Scholar 

  125. Bauler TJ, Kamiya N, Lapinski PE et al (2011) Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations. Dis Model Mech 4: 228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marin TM, Keith K, Davies B et al (2011) Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 121:1026–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tajan M, Batut A, Cadoudal T et al (2014) LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proc Natl Acad Sci U S A 111:E4494–E4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schramm C, Fine DM, Edwards MA et al (2012) The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol 302:H231–H243

    Article  CAS  PubMed  Google Scholar 

  129. Edwards MA, Crombie K, Schramm C et al (2015) The Q510E mutation in Shp2 perturbs heart valve development by increasing cell migration. J Appl Physiol (1985) 118: 124–131

    Article  CAS  Google Scholar 

  130. Pierpont ME, Magoulas PL, Adi S et al (2014) Cardio-facio-cutaneous syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 134:e1149–e1162

    Article  PubMed  PubMed Central  Google Scholar 

  131. Urosevic J, Sauzeau V, Soto-Montenegro ML et al (2011) Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proc Natl Acad Sci U S A 108:5015–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Andreadi C, Cheung LK, Giblett S et al (2012) The intermediate-activity (L597V)BRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes Dev 26:1945–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Inoue S, Moriya M, Watanabe Y et al (2014) New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome. Hum Mol Genet 23:6553–6566

    Article  CAS  PubMed  Google Scholar 

  134. Rauen KA (2007) HRAS and the Costello syndrome. Clin Genet 71:101–108

    Article  CAS  PubMed  Google Scholar 

  135. Gripp KW, Lin AE (2012) Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations. Genet Med 14:285–292

    Article  CAS  PubMed  Google Scholar 

  136. Schuhmacher AJ, Guerra C, Sauzeau V et al (2008) A mouse model for Costello syndrome reveals an Ang II-mediated hypertensive condition. J Clin Invest 118:2169–2179

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen X, Mitsutake N, LaPerle K et al (2009) Endogenous expression of Hras(G12V) induces developmental defects and neoplasms with copy number imbalances of the oncogene. Proc Natl Acad Sci U S A 106: 7979–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Estep AL, Tidyman WE, Teitell MA et al (2006) HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild type allele in malignancy. Am J Med Genet A 140:8–16

    Article  PubMed  CAS  Google Scholar 

  139. Viosca J, Schuhmacher AJ, Guerra C et al (2009) Germline expression of H-Ras(G12V) causes neurological deficits associated to Costello syndrome. Genes Brain Behav 8:60–71

    Article  CAS  PubMed  Google Scholar 

  140. Goodwin AF, Tidyman WE, Jheon AH et al (2014) Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet 23:682–692

    Article  CAS  PubMed  Google Scholar 

  141. Chen X, Makarewicz JM, Knauf JA et al (2014) Transformation by Hras(G12V) is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition. Oncogene 33:5442–5449

    Article  CAS  PubMed  Google Scholar 

  142. Brems H, Legius E (2013) Legius syndrome, an update. Molecular pathology of mutations in SPRED1. Keio J Med 62:107–112

    Article  CAS  PubMed  Google Scholar 

  143. Inoue H, Kato R, Fukuyama S et al (2005) Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. J Exp Med 201:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Denayer E, Ahmed T, Brems H et al (2008) Spred1 is required for synaptic plasticity and hippocampus-dependent learning. J Neurosci 28:14443–14449

    Article  CAS  PubMed  Google Scholar 

  145. Boon LM, Mulliken JB, Vikkula M (2005) RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev 15:265–269

    Article  CAS  PubMed  Google Scholar 

  146. Revencu N, Boon LM, Mulliken JB et al (2008) Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 29:959–965

    Article  CAS  PubMed  Google Scholar 

  147. Henkemeyer M, Rossi DJ, Holmyard DP et al (1995) Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377:695–701

    Article  CAS  PubMed  Google Scholar 

  148. Lapinski PE, Bauler TJ, Brown EJ et al (2007) Generation of mice with a conditional allele of the p120 Ras GTPase-activating protein. Genesis 45:762–767

    Article  CAS  PubMed  Google Scholar 

  149. Lapinski PE, Kwon S, Lubeck BA et al (2012) RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J Clin Invest 122:733–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Burrows PE, Gonzalez-Garay ML, Rasmussen JC et al (2013) Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man. Proc Natl Acad Sci U S A 110:8621–8626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lubeck BA, Lapinski PE, Bauler TJ et al (2014) Blood vascular abnormalities in Rasa1(R780Q) knockin mice: implications for the pathogenesis of capillary malformation-arteriovenous malformation. Am J Pathol 184:3163–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jang SI, Lee EJ, Hart PS et al (2007) Germ line gain of function with SOS1 mutation in hereditary gingival fibromatosis. J Biol Chem 282:20245–20255

    Article  CAS  PubMed  Google Scholar 

  153. Sibilia M, Fleischmann A, Behrens A et al (2000) The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 102:211–220

    Article  CAS  PubMed  Google Scholar 

  154. Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lakso M, Sauer B, Mosinger B Jr et al (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6232–6236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank to Dr. Raquel García-Medina for the critical reading of this manuscript. Work was supported by grants from Fondo de Investigación Sanitaria (PI042124, PI08-1623, PI11-02529), Autonomous Community of Madrid (GR/SAL/0349/2004), and Fundación Ramón Areces (FRA 01-09-001) to C.G. I.H.-P. was supported by PFIS grant from the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Guerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hernández-Porras, I., Guerra, C. (2017). Modeling RASopathies with Genetically Modified Mouse Models. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics