Skip to main content

Discovering Functional ERK Substrates Regulating Caenorhabditis elegans Germline Development

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

The Rat Sarcoma (RAS) GTPAse-mediated extracellular signal-regulated kinase (ERK) pathway regulates multiple biological processes across metazoans. In particular during Caenorhabditis elegans oogenesis, ERK signaling has been shown to regulate over seven distinct biological processes in a temporal and sequential manner. To fully elucidate how ERK signaling cascade orchestrates these different biological processes in vivo, identification of the direct functional substrates of the pathway is critical. This chapter describes the methods that were used to identify ERK substrates in a global manner and study their functions in the germline. These approaches can also be generally applied to study ERK-dependent biological processes in other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen Z, Gibson TB, Robinson F et al (2001) MAP kinases. Chem Rev 101:2449–2476

    Article  CAS  PubMed  Google Scholar 

  2. Caunt CJ, Finch AR, Sedgley KR et al (2006) Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab 17:276–283

    Article  CAS  PubMed  Google Scholar 

  3. Ku H, Meier KE (2000) Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells. J Biol Chem 275:11333–11340

    Article  CAS  PubMed  Google Scholar 

  4. Gille H, Kortenjann M, Thomae O et al (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14:951–962

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Moghal N, Sternberg PW (2003) The epidermal growth factor system in Caenorhabditis elegans. Exp Cell Res 284:150–159

    Article  CAS  PubMed  Google Scholar 

  6. Blalock WL, Weinstein-Oppenheimer C, Chang F et al (1999) Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 13:1109–1166

    Article  CAS  PubMed  Google Scholar 

  7. Geijsen N, Koenderman L, Coffer PJ (2001) Specificity in cytokine signal transduction: lessons learned from the IL-3/IL-5/GM-CSF receptor family. Cytokine Growth Factor Rev 12:19–25

    Article  CAS  PubMed  Google Scholar 

  8. McCubrey JA, Steelman LS, Hoyle PE et al (1998) Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 12:1903–1929

    Article  CAS  PubMed  Google Scholar 

  9. Kratz CP, Schubbert S, Bollag G et al (2006) Germline mutations in components of the Ras signaling pathway in Noonan syndrome and related disorders. Cell Cycle 5:1607–1611

    Article  CAS  PubMed  Google Scholar 

  10. Mercer KE, Pritchard CA (2003) Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta 1653:25–40

    CAS  PubMed  Google Scholar 

  11. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  12. Yang SH, Whitmarsh AJ, Davis RJ et al (1998) Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J 17:1740–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharrocks AD, Yang SH, Galanis A (2000) Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25:448–453

    Article  CAS  PubMed  Google Scholar 

  14. Smith JA, Poteet-Smith CE, Malarkey K et al (1999) Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem 274:2893–2898

    Article  CAS  PubMed  Google Scholar 

  15. Biondi RM, Nebreda AR (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacobs D, Glossip D, Xing H et al (1999) Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13:163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhan XL, Guan KL (1999) A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Genes Dev 13:2811–2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin HY, Zhang S, West BL et al (2003) Identification of the putative MAP kinase docking site in the thyroid hormone receptor-beta1 DNA-binding domain: functional consequences of mutations at the docking site. Biochemistry 42:7571–7579

    Article  CAS  PubMed  Google Scholar 

  19. Fantz DA, Jacobs D, Glossip D et al (2001) Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J Biol Chem 276:27256–27265

    Article  CAS  PubMed  Google Scholar 

  20. Enslen H, Davis RJ (2001) Regulation of MAP kinases by docking domains. Biol Cell 93:5–14

    Article  CAS  PubMed  Google Scholar 

  21. Arur S, Ohmachi M, Nayak S et al (2009) Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development. Proc Natl Acad Sci U S A 106:4776–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hubbard EJ, Greenstein D (2000) The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn 218:2–22

    Article  CAS  PubMed  Google Scholar 

  23. Lackner MR, Kornfeld K, Miller LM et al (1994) A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev 8:160–173

    Article  CAS  PubMed  Google Scholar 

  24. Wu Y, Han M (1994) Suppression of activated Let-60 ras protein defines a role of Caenorhabditis elegans Sur-1 MAP kinase in vulval differentiation. Genes Dev 8: 147–159

    Article  CAS  PubMed  Google Scholar 

  25. Sundaram MV (2006) RTK/Ras/MAPK signaling. WormBook 2006:1–19

    Google Scholar 

  26. Hansen D, Schedl T (2006) The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Curr Top Dev Biol 76: 185–215

    Article  CAS  PubMed  Google Scholar 

  27. Miller MA, Nguyen VQ, Lee MH et al (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291:2144–2147

    Article  CAS  PubMed  Google Scholar 

  28. Reinke V, Smith HE, Nance J et al (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6:605–616

    Article  CAS  PubMed  Google Scholar 

  29. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    CAS  PubMed  Google Scholar 

  31. Songyang Z, Lu KP, Kwon YT et al (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16:6486–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang HY, Lin HY, Zhang S et al (2004) Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145:3265–3272

    Article  CAS  PubMed  Google Scholar 

  33. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs D, Beitel GJ, Clark SG et al (1998) Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics 149: 1809–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179–187

    Article  CAS  PubMed  Google Scholar 

  36. Lee MH, Ohmachi M, Arur S et al (2007) Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177:2039–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lopez AL 3rd, Chen J, Joo HJ et al (2013) DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis. Dev Cell 27:227–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.J.C. is funded by the UT Graduate School of Biomedical Sciences Dean’s Scholarship. NIH RO1 GM 98200, American Cancer Society Grant ACS RSG014-044-DDC and CPRIT RP160023 grants fund work in the Arur Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swathi Arur Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, J.J., Arur, S. (2017). Discovering Functional ERK Substrates Regulating Caenorhabditis elegans Germline Development. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics