Skip to main content

Measuring ERK Activity Dynamics in Single Living Cells Using FRET Biosensors

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

Fluorescence resonance energy transfer (FRET)-based biosensors are powerful tools for measuring spatio-temporal signaling dynamics in single living cells with subcellular resolution. There are quite a number of already existing sensors and this technology is increasingly used to obtain quantitative dynamic datasets. In this chapter, we describe the analysis of endogenous extracellular signal-regulated kinase (ERK) activity in living cells using the EKAR2G (ERK activity reporter second generation) probe. We focus on the generation of stable cell lines expressing the EKAR2G sensor as well as data acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Neill E, Kolch W (2004) Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer 90:283–288

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885

    Article  CAS  PubMed  Google Scholar 

  3. Gehart H, Kumpf S, Ittner A et al (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 11:834–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628

    Article  CAS  PubMed  Google Scholar 

  5. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  6. O'Shaughnessy EC, Palani S, Collins JJ et al (2011) Tunable signal processing in synthetic MAP kinase cascades. Cell 144:119–131

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  8. Albeck JG, Mills GB, Brugge JS (2013) Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol Cell 49:249–261

    Article  CAS  PubMed  Google Scholar 

  9. Aoki K, Kumagai Y, Sakurai A et al (2013) Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol Cell 52:529–540

    Article  CAS  PubMed  Google Scholar 

  10. Fritz RD, Letzelter M, Reimann A et al (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6(285):12

    Article  Google Scholar 

  11. Harvey CD, Ehrhardt AG, Cellurale C et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci USA 105:19264–19269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirata E, Girotti MR, Viros A et al (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27:574–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizuno R, Kamioka Y, Kabashima K et al (2014) In vivo imaging reveals PKA regulation of ERK activity during neutrophil recruitment to inflamed intestines. J Exp Med 211:1123–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryu HCM, Dobrzynski M, Fey D et al (2015) Frequency modulation of ERK activation dynamics rewires cell fate. Mol Syst Biol 11:838

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hamers D, van Voorst VL, Borst JW et al (2014) Development of FRET biosensors for mammalian and plant systems. Protoplasma 251:333–347

    Article  CAS  PubMed  Google Scholar 

  17. Dehmelt L, Bastiaens PI (2010) Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol 11:440–452

    Article  CAS  PubMed  Google Scholar 

  18. Heidecker G, Huleihel M, Cleveland JL et al (1990) Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 10:2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan M, Templeton DJ (1994) Identification of 2 serine residues of MEK-1 that are differentially phosphorylated during activation by raf and MEK kinase. J Biol Chem 269:19067–19073

    CAS  PubMed  Google Scholar 

  20. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  CAS  PubMed  Google Scholar 

  21. Santos SD, Verveer PJ, Bastiaens PI (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330

    Article  CAS  PubMed  Google Scholar 

  22. von Kriegsheim A, Baiocchi D, Birtwistle M et al (2009) Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol 11:1458–1464

    Article  Google Scholar 

  23. Sasagawa S, Ozaki Y, Fujita K et al (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7:365–373

    Article  CAS  PubMed  Google Scholar 

  24. Davis HE, Morgan JR, Yarmush ML (2002) Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 97:159–172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Human Frontier Science Program, the Swiss National Science Foundation, and the Novartis Foundation for medical-biological research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Blum, Y., Fritz, R.D., Ryu, H., Pertz, O. (2017). Measuring ERK Activity Dynamics in Single Living Cells Using FRET Biosensors. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics