Skip to main content

Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments

  • Protocol
  • First Online:
Optical Tweezers

Abstract

Optical manipulation techniques provide researchers the powerful ability to directly move, probe and interrogate molecular complexes. Quadruple optical trapping is an emerging method for optical manipulation and force spectroscopy that has found its primary use in studying dual DNA interactions, but is certainly not limited to DNA investigations. The key benefit of quadruple optical trapping is that two molecular strands can be manipulated independently and simultaneously. The molecular geometries of the strands can thus be controlled and their interactions can be quantified by force measurements. Accurate control of molecular geometry is of critical importance for the analysis of, for example, protein-mediated DNA-bridging, which plays an important role in DNA compaction. Here, we describe the design of a dedicated and robust quadruple optical trapping-instrument. This instrument can be switched straightforwardly to a high-resolution dual trap and it is integrated with microfluidics and single-molecule fluorescence microscopy, making it a highly versatile tool for correlative single-molecule analysis of a wide range of biomolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL (2014) Optical tweezers analysis of DNA-protein complexes. Chem Rev 114:3087–3119

    Article  CAS  Google Scholar 

  2. Herbert KM, Greenleaf WJ, Block SM (2008) Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77:149–176

    Article  CAS  Google Scholar 

  3. Hegner M, Smith SB, Bustamante C (1999) Polymerization and mechanical properties of single RecA-DNA filaments. Proc Natl Acad Sci U S A 96:10109–10114

    Article  CAS  Google Scholar 

  4. Block SM, Goldstein LSB, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  CAS  Google Scholar 

  5. Gross P et al (2011) Quantifying how DNA stretches, melts and changes twist under tension. Nat Phys 7:731–736

    Article  CAS  Google Scholar 

  6. Kellermayer, M.S. Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers. Science (80). 1997;276:1112–1116.

    Google Scholar 

  7. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465

    Article  CAS  Google Scholar 

  8. Dame RT, Noom MC, Wuite GJL (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444:387–390

    Article  CAS  Google Scholar 

  9. Laurens N et al (2012) Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nat Commun 3:1328

    Article  Google Scholar 

  10. Wiggins PA, Dame RT, Noom MC, Wuite GJL (2009) Protein-mediated molecular bridging: a key mechanism in biopolymer organization. Biophys J 97:1997–2003

    Article  CAS  Google Scholar 

  11. Forget AL, Kowalczykowski SC (2012) Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482:423–427

    Article  CAS  Google Scholar 

  12. De Vlaminck I et al (2012) Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol Cell 46:616–624

    Article  Google Scholar 

  13. van Mameren J et al (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457:745–748

    Article  Google Scholar 

  14. Noom MC, van den Broek B, van Mameren J, Wuite GJL (2007) Visualizing single DNA-bound proteins using DNA as a scanning probe. Nat Methods 4:1031–1036

    Article  CAS  Google Scholar 

  15. van Mameren J, Peterman EJG, Wuite GJL (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389

    Article  Google Scholar 

  16. Gross P, Farge G, Peterman EJG, Wuite GJL (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions. Methods Enzymol 475:427–453

    Article  CAS  Google Scholar 

  17. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    Article  CAS  Google Scholar 

  18. Shaevitz JW, Abbondanzieri EA, Landick R, Block SM (2003) Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426:684–687

    Article  CAS  Google Scholar 

  19. van den Broek B, Noom MC, Wuite GJL (2005) DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway. Nucleic Acids Res 33:2676–2684

    Article  Google Scholar 

  20. Comstock MJ, Ha T, Chemla YR (2011) Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 8:335–340

    Article  CAS  Google Scholar 

  21. Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103:9006–9011

    Article  CAS  Google Scholar 

  22. Heller I et al (2014) Mobility analysis of super-resolved proteins on optically stretched DNA: comparing imaging techniques and parameters. Chemphyschem 15:727–733

    Article  CAS  Google Scholar 

  23. Candelli A, Wuite GJL, Peterman EJG (2011) Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. Phys Chem Chem Phys 13:7263–7272

    Article  CAS  Google Scholar 

  24. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9

    Article  CAS  Google Scholar 

  25. Heller I et al (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10:910–916

    Article  CAS  Google Scholar 

  26. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  CAS  Google Scholar 

Download references

Competing Interest Statement

The described technology is licensed to LUMICKS B.V., in which IH, GJLW, and EJGP declare a financial interest. NL, DV, ODB, ASB, GAK, and IB declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin J. G. Peterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Heller, I. et al. (2017). Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics