Skip to main content

Optical Torque Wrench Design and Calibration

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

Expanding the capabilities of optical traps with angular control of the trapped particle has numerous potential applications in all fields where standard linear optical tweezers are employed. Here we describe in detail the construction, alignment, and calibration of the Optical Torque Wrench, a mode of function that can be added to linear optical tweezers to simultaneously apply and measure both force and torque on birefringent microscopic cylindrical particles. The interaction between the linear polarization of the laser and the birefringent cylinder creates an angular trap for the particle orientation, described by a periodic potential. As a consequence of the experimental control of the tilt of the periodic potential, the dynamical excitability of the system can be observed. Angular optical tweezers remain less widespread than their linear counterpart. We hope this technical guide can foster their development and new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  2. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  CAS  Google Scholar 

  3. Padgett M, Bowman R (2011) Tweezers with a twist. Nat Photon 5:343–348

    Article  CAS  Google Scholar 

  4. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  CAS  Google Scholar 

  5. Friese MEJ, Nieminem TA, Heckenberg NR, Rubinsztein-Dunlop H (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394:348–350

    Article  CAS  Google Scholar 

  6. Bryant Z, Oberstrass FC, Basu A (2012) Recent developments in single-molecule DNA mechanics. Curr Opin Struct Biol 22:304–312

    Article  CAS  Google Scholar 

  7. Forth S, Sheinin MY, Inman J, Wang MD (2013) Torque measurement at the single-molecule level. Ann Rev Biophys 42:583–604

    Article  CAS  Google Scholar 

  8. Lipfert J, van Oene M, Lee M et al (2015) Torque spectroscopy for the study of rotary motion in biological systems. Chem Rev 115:1449–1474

    Article  CAS  Google Scholar 

  9. Gilbert N, Allan J (2014) Supercoiling in DNA and chromatin. Curr Opin Genet Dev 25:15–21

    Article  CAS  Google Scholar 

  10. Forth S, Deufel C, Sheinin MY et al (2008) Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys Rev Lett 100:148301

    Article  Google Scholar 

  11. Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340:1580–1583

    Article  CAS  Google Scholar 

  12. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase - a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  Google Scholar 

  13. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Article  CAS  Google Scholar 

  14. Shrivastava A, Lele PP, Berg H (2015) A rotary motor drives flavobacterium gliding. Curr Biol 25:338–341

    Article  CAS  Google Scholar 

  15. Magariyama Y et al (1994) Very fast flagellar rotation. Nature 371:752–752

    Article  CAS  Google Scholar 

  16. Lavery MPJ, Speirits FC, Barnett SM, Padgett MJ (2013) Detection of a spinning object using light’s orbital angular momentum. Science 341:537–540

    Article  CAS  Google Scholar 

  17. Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251

    Article  CAS  Google Scholar 

  18. Normanno D, Capitanio M, Pavone F (2004) Spin absorption, windmill, and magneto-optic effects in optical angular momentum transfer. Phys Rev A 70:053829

    Article  Google Scholar 

  19. Pedaci F, Huang Z, Oene Mv et al (2011) Excitable particle in an optical torque wrench. Nat Phys 7:259–264

    Article  CAS  Google Scholar 

  20. La Porta A, Wang MD (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92:190801

    Article  Google Scholar 

  21. Gutierrez-Medina B, Andreasson JOL, Greenleaf WJ et al (2010) An optical apparatus for rotation and trapping. Methods Enzymol 475:377–404

    Article  CAS  Google Scholar 

  22. Pedaci F, Huang Z, van Oene M, Dekker NH (2012) Calibration of the optical torque wrench. Opt Exp 20:3787–3802

    Article  Google Scholar 

  23. Cao Y, Stilgoe AB, Chen L et al (2012) Equilibrium orientations and positions of non-spherical particles in optical traps. Opt Exp 20:12987–12996

    Article  Google Scholar 

  24. Inman J, Forth S, Wang MD (2010) Passive torque wrench and angular position detection using a single-beam optical trap. Opt Lett 35:2949–2951

    Article  Google Scholar 

  25. Adler R (1946) A study of locking phenomena in oscillators. Proc IRE 34:351–357

    Article  Google Scholar 

  26. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  Google Scholar 

  27. Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules in mitosis. In: Mitosis, vol. 1136. Springer, New York, pp 171–246

    Chapter  Google Scholar 

  28. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  CAS  Google Scholar 

  29. Mameren J v, Wuite GJL, Heller I (2011) Introduction to optical tweezers: background, system designs, and commercial solutions. In: Single molecule analysis. Humana Press, pp 1–20

    Google Scholar 

  30. Lee WM, Reece PJ, Marchington RF, Metzger NK, Dholakia K (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protoc 2:3226–3238

    Article  CAS  Google Scholar 

  31. Schwettmann A, Sedlacek J, Shaffer JP (2011) Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization. Rev Sci Instrum 82:103103

    Article  Google Scholar 

  32. Deufel C, Forth S, Simmons CR et al (2007) Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods 4:223–225

    Article  CAS  Google Scholar 

  33. Huang Z, Pedaci F, Wiggin M et al (2011) Electron beam fabrication of micron-scale birefringent quartz particles for use in optical trapping. ACS Nano 5:1418–1427

    Article  CAS  Google Scholar 

  34. Li P-C, Chang J-C, La Porta A, Yu ET (2014) Fabrication of birefringent nanocylinders for single-molecule force and torque measurement. Nanotechnology 25:235304

    Article  Google Scholar 

  35. Forth S, Deufel C, Sheinin MY et al (2008) Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys Rev Lett 100:148301

    Article  Google Scholar 

  36. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101

    Article  Google Scholar 

  37. Reimann P, den Broeck CV, Linke H et al. (2001) Giant acceleration of free diffusion by use of tilted periodic potentials. Phys Rev Lett 87:010602

    Article  CAS  Google Scholar 

  38. Asakia KS, Mari SA (2005) Diffusion coefficient and mobility of a Brownian particle in a tilted periodic potential. J Phys Soc Jpn 74:2226–2232

    Article  Google Scholar 

  39. Tirado MM, de La Torre JG (1980) Rotational dynamics of rigid, symmetric top macromolecules. Application to circular cylinders. J Chem Phys 73:1986

    Google Scholar 

  40. Kang H, Jia B, Gu M (2010) Polarization characterization in the focal volume of high numerical aperture objectives. Opt Exp 18:10813–10821

    Article  Google Scholar 

  41. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594

    Article  Google Scholar 

  42. Santybayeva Z, Meghit A, Desgarceaux R et al (2016) Fabrication of quartz microcylinders by laser interference lithography for angular optical tweezers. J Micro/Nanolith MEMS MOEMS 0001;15(3):034507.

    Google Scholar 

Download references

Acknowledgements

We are grateful to B. Charlot (IES Montpellier, France) for the novel nano-fabrication protocol of the particles and their SEM image, and to A. Nord for critical reading of the manuscript. We acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n.306475.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Santybayeva, Z., Pedaci, F. (2017). Optical Torque Wrench Design and Calibration. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics