Skip to main content

Custom-Made Microspheres for Optical Tweezers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

Due to their high position and force sensitivity and the ability to remotely apply forces and torques, optical tweezers are widely used in diverse fields, such as biology, material science, and physics. Often, small dielectric particles are trapped and used as probes, which for experimental convenience are mostly spherical and composed of silica or polystyrene. The optical properties of these materials together with the microsphere size determine the trapping efficiency, and the position and force resolution. However, using only a single, homogeneous, isotropic, and unstructured material limits the range of trapping properties and thereby the applications of optical tweezers. Here, we show how custom-made microspheres composed of coated high-refractive-index materials—titania and nanodiamonds—and birefringent, liquid crystals extend the range and combination of desired trapping properties. These custom-made microspheres either enable the generation of high forces, a high force or time resolution, or the applications of torques. Custom-made probes expand the range of possible experiments and approaches broadening the scope and applicability of optical tweezers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  2. Perkins T (2009) Optical traps for single molecule biophysics: a primer. Laser Photon Rev 3:203–220

    Article  CAS  Google Scholar 

  3. Zhang H, Liu Kk (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690

    Article  CAS  Google Scholar 

  4. Fazal F, Block S (2011) Optical tweezers study life under tension. Nat Photon 5:318–321

    Article  CAS  Google Scholar 

  5. Bormuth V, Jannasch A, Ander M et al (2008) Optical trapping of coated microspheres. Opt Express 16:423–427

    Article  Google Scholar 

  6. Jannasch A, Bormuth V, van Kats CM et al (2008) Coated microspheres as enhanced probes for optical trapping. Proc SPIE 7038:70382B

    Article  Google Scholar 

  7. Demirörs AF, Jannasch A, van Oostrum PDJ et al (2011) Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence. Langmuir 27:1626–1634

    Article  Google Scholar 

  8. Jannasch A, Mahamdeh M, Schäffer E (2011) Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Phys Rev Lett 107:228301

    Article  Google Scholar 

  9. Jannasch A, Demirörs AF, van Oostrum PDJ et al (2012) Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat Photon 6:469–473

    Article  CAS  Google Scholar 

  10. Mahamdeh M, Schäffer E (2009) Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt Express 17:17190–17199

    Article  CAS  Google Scholar 

  11. Mahamdeh M, Campos CP, Schäffer E (2011) Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers. Opt Express 19:11759–11768

    Article  Google Scholar 

  12. Craig D, McDonald A, Mazilu M et al (2015) Enhanced optical manipulation of cells using antireflection coated microparticles. ACS Photon 2:1403–1409

    Article  CAS  Google Scholar 

  13. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101

    Article  Google Scholar 

  14. Yu SJ, Kang MW, Chang HC et al (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605

    Article  CAS  Google Scholar 

  15. Fu CC, Lee HY, Chen K et al (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104:727–732

    Article  CAS  Google Scholar 

  16. Bumb A, Sarkar SK, Billington N et al (2013) Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J Am Chem Soc 135:7815–7818

    Article  CAS  Google Scholar 

  17. von Haartman E, Jiang H, Khomich AA et al (2013) Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J Mater Chem B 1:2358

    Article  Google Scholar 

  18. Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. In: Methods in cell biology, vol 55. Academic Press, New York, pp 129–156

    Google Scholar 

  19. Bishop A, Nieminen T, Heckenberg N et al (2003) Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys Rev A 68:033802

    Article  Google Scholar 

  20. Bishop AI, Nieminen TA, Heckenberg NR et al (2004) Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92:198104

    Article  Google Scholar 

  21. La Porta A, Wang MD (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92:190801

    Article  Google Scholar 

  22. Deufel C, Forth S, Simmons CR et al (2007) Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods 4:223–225

    Article  CAS  Google Scholar 

  23. Gutiérrez-Medina B, Andreasson JOL, Greenleaf WJ et al (2010) An optical apparatus for rotation and trapping. Methods Enzymol 475:377–404

    Article  Google Scholar 

  24. Pedaci F, Huang Z, van Oene M et al (2012) Calibration of the optical torque wrench. Opt Express 20:3787–3802

    Article  Google Scholar 

  25. Vogel R, Persson M, Feng C et al (2009) Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25:11672–11679

    Article  CAS  Google Scholar 

  26. Chen X, Berg HC (2000) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78:1036–1041

    Article  CAS  Google Scholar 

  27. Xing J, Bai F, Berry R et al (2006) Torque-speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci USA 103:1260–1265

    Article  CAS  Google Scholar 

  28. Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340:1580–1583

    Article  CAS  Google Scholar 

  29. Toyabe S, Watanabe-Nakayama T, Okamoto T et al (2011) Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc Natl Acad Sci USA 108:17951–17956

    Article  CAS  Google Scholar 

  30. Hua W, Chung J, Gelles J (2002) Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295:844–848

    Article  CAS  Google Scholar 

  31. Andrecka J, Ortega Arroyo J, Takagi Y et al (2015) Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. eLife 4:e05413

    Article  Google Scholar 

  32. Sandomirski K, Martin S, Maret G et al (2004) Highly birefringent colloidal particles for tracer studies. J Phys Condens Matter 16:S4137

    Article  CAS  Google Scholar 

  33. Nieminen TA, Loke VLY, Stilgoe AB et al (2007) Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 9:S196–S203

    Article  Google Scholar 

  34. Hu Y, Nieminen TA, Heckenberg NR et al (2008) Antireflection coating for improved optical trapping. J Appl Phys 103:093119

    Article  Google Scholar 

  35. Yu HK, Yi GR, Kang JH et al (2008) Surfactant-assisted synthesis of uniform titania microspheres and their clusters. Chem Mater 20:2704–2710

    Article  CAS  Google Scholar 

  36. Pal M, Serrano JG, Santiago P et al (2007) Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J Phys Chem C 111:96–102

    Article  CAS  Google Scholar 

  37. Eiden-Assmann S, Widoniak J, Maret G (2005) Synthesis and characterization of hollow and non-hollow monodisperse colloidal tio2 particles. J Disper Sci Technol 25:535–545

    Article  Google Scholar 

  38. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  39. Grün M, Unger KK, Matsumoto A et al (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor Mesopor Mater 27:207–216

    Article  Google Scholar 

  40. Kresge CT, Leonowicz ME, Roth WJ et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  41. Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4:354–359

    Article  CAS  Google Scholar 

  42. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys: Condens Matter 2:6869–6892

    CAS  Google Scholar 

  43. Liu S, Cool P, Collart O et al (2003) The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent. J Phys Chem B 107:10405–10411

    Article  CAS  Google Scholar 

  44. Yoon SB, Kim JY, Kim JH et al (2007) Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. J Mater Chem 17:1758–1761

    Article  CAS  Google Scholar 

  45. Kim JH, Yoon SB, Kim JY et al (2008) Synthesis of monodisperse silica spheres with solid core and mesoporous shell: morphological control of mesopores. Colloids Surf A 313–314:77–81

    Article  Google Scholar 

  46. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego

    Google Scholar 

  47. Bugiel M, Fantana H, Bormuth V et al (2015) Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality. J Biol Methods 2:e30

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Sandomirski and T. Gisler for a detailed protocol how to make birefringent microspheres, Basudev Roy for help with the rotational power spectrum, and Sven A. Szilagyi, Melanie Eckert, Michael Bugiel, and Mayank Chugh for comments on the manuscript. This work was supported by the European Research Council (ERC Starting Grant 2010, Nanomech 260875), the Rosa Luxemburg Foundation, the Technische Universität Dresden and the Universität Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Schäffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jannasch, A. et al. (2017). Custom-Made Microspheres for Optical Tweezers. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics