Skip to main content

Quantifying Force and Viscoelasticity Inside Living Cells Using an Active–Passive Calibrated Optical Trap

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

As described in the previous chapters, optical tweezers have become a tool of precision for in vitro single-molecule investigations, where the single molecule of interest most often is studied in purified form in an experimental assay with a well-controlled fluidic environment. A well-controlled fluidic environment implies that the physical properties of the liquid, most notably the viscosity, are known and the fluidic environment can, for calibrational purposes, be treated as a simple liquid.

In vivo, however, optical tweezers have primarily been used as a tool of manipulation and not so often for precise quantitative force measurements, due to the unknown value of the spring constant of the optical trap formed within the cell’s viscoelastic cytoplasm. Here, we describe a method for utilizing optical tweezers for quantitative in vivo force measurements. The experimental protocol and the protocol for data analysis rely on two types of experiments, passive observation of the thermal motion of a trapped object inside a living cell, followed by observations of the response of the trapped object when subject to controlled oscillations of the optical trap. One advantage of this calibration method is that the size and refractive properties of the trapped object and the viscoelastic properties of its environment need not be known. We explain the protocol and demonstrate its use with experiments of trapped granules inside live S. pombe cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fazal FM, Block SM (2011) Optical tweezers study life under tension. Nat Photonics 5:318–321

    Article  CAS  Google Scholar 

  2. Moffitt JR, Chemla YR, Smith SB et al (2008) Recent advances in optical tweezers. Annu Rev Biochem 77(1):205–228

    Article  CAS  Google Scholar 

  3. Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171–190

    Article  CAS  Google Scholar 

  4. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    Article  CAS  Google Scholar 

  5. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75(3):594–612

    Article  Google Scholar 

  6. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77(10):103101

    Article  Google Scholar 

  7. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  CAS  Google Scholar 

  8. Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. Methods Cell Biol 55:129–156

    Article  CAS  Google Scholar 

  9. Veigel C, Schmidt CF (2011) Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 12(3):163–176

    Article  CAS  Google Scholar 

  10. Sims PA, Xie XS (2009) Probing dynein and kinesin stepping with mechanical manipulation in a living cell. ChemPhysChem 10(9-10):1511–1516

    Article  CAS  Google Scholar 

  11. Leidel C, Longoria RA, Gutierrez FM et al (2012) Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys J 103(3):492–500

    Article  CAS  Google Scholar 

  12. Shubeita GT, Tran SL, Xu J et al (2008) Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135(6):1098–1107

    Article  CAS  Google Scholar 

  13. Guet D, Mandal K, Pinot M et al (2014) Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events. Curr Biol 24(15):1700–1711

    Article  CAS  Google Scholar 

  14. Oddershede LB (2012) Force probing of individual molecules inside the living cell is now a reality. Nat Chem Biol 8(11):879–886

    Article  CAS  Google Scholar 

  15. Norregaard K, Jauffred L, Berg-Sorensen K et al (2014) Optical manipulation of single molecules in the living cell. Phys Chem Chem Phys 16(25):12614–12624

    Article  CAS  Google Scholar 

  16. López-Quesada C, Fontaine AS, Farré A et al (2014) Artificially-induced organelles are optimal targets for optical trapping experiments in living cells. Biomed Opt Express 5(7):1993–2008

    Article  Google Scholar 

  17. Gross SP (2003) Application of optical traps in vivo. Methods Enzymol 361:162–174

    Article  CAS  Google Scholar 

  18. Rasmussen MB, Oddershede LB, Siegumfeldt H (2008) Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl Environ Microbiol 74(8):2441–2446

    Article  CAS  Google Scholar 

  19. Peterman EJG, Gittes F, Schmidt CF (2003) Laser-induced heating in optical traps. Biophys J 84(2):1308–1316

    Article  CAS  Google Scholar 

  20. Neuman KC, Chadd EH, Liou GF et al (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77(5):2856–2863

    Article  CAS  Google Scholar 

  21. Lee YJ, Patel D, Park S (2011) Local rheology of human neutrophils investigated using atomic force microscopy. Int J Biol Sci 7(1):102–111

    Article  Google Scholar 

  22. Wilhelm C (2008) Out-of-equilibrium microrheology inside living cells. Phys Rev Lett 101(2):028101

    Article  Google Scholar 

  23. Dufrene YF, Evans E, Engel A et al (2011) Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods 8(2):123–127

    Article  CAS  Google Scholar 

  24. Jun Y, Tripathy SK, Narayanareddy BR et al (2014) Calibration of optical tweezers for in vivo force measurements: how do different approaches compare? Biophys J 107(6):1474–1484

    Article  CAS  Google Scholar 

  25. Tolić-Nørrelykke IM, Munteanu E-L, Thon G et al (2004) Anomalous diffusion in living yeast cells. Phys Rev Lett 93(7):078102

    Article  Google Scholar 

  26. Schnurr B, Gittes F, MacKintosh FC et al (1997) Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30(25):7781–7792

    Article  CAS  Google Scholar 

  27. Gittes F, Schnurr B, Olmsted PD et al (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79(17):3286–3289

    Article  CAS  Google Scholar 

  28. Mas J, Farré A, López-Quesada C et al (2011) Measuring stall forces in vivo with optical tweezers through light momentum changes. Proc SPIE 8097:809726

    Article  Google Scholar 

  29. Farré A, Montes-Usategui M (2010) A force detection technique for single-beam optical traps based on direct measurement of light momentum changes. Opt Express 18(11):11955–11968

    Article  Google Scholar 

  30. Farré A, Marsà F, Montes-Usategui M (2012) Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. Opt Express 20(11):12270–12291

    Article  Google Scholar 

  31. Smith SB, Cui Y, Bustamante C (2003) Optical-trap force transducer that operates by direct measurement of light momentum. In: Methods in Enzymology. Academic, New York, NY, pp 134–162

    Google Scholar 

  32. Hendricks AG, Holzbaur EL, Goldman YE (2012) Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc Natl Acad Sci U S A 109(45):18447–18452

    Article  CAS  Google Scholar 

  33. Vermeulen KC, van Mameren J, Stienen GJM et al (2006) Calibrating bead displacements in optical tweezers using acousto-optic deflectors. Rev Sci Instrum 77(1):013704

    Article  Google Scholar 

  34. Blehm BH, Schroer TA, Trybus KM et al (2013) In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc Natl Acad Sci 110(9):3381–3386

    Article  CAS  Google Scholar 

  35. Valentine MT, Guydosh NR, Gutiérrez-Medina B et al (2008) Precision steering of an optical trap by electro-optic deflection. Opt Lett 33(6):599–601

    Article  Google Scholar 

  36. Mas J, Richardson AC, Reihani SN et al (2013) Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells. Phys Biol 10(4):046006

    Article  Google Scholar 

  37. Fischer M, Richardson AC, Reihani SN et al (2010) Active-passive calibration of optical tweezers in viscoelastic media. Rev Sci Instrum 81(1):015103

    Article  Google Scholar 

  38. Fischer M, Berg-Sorensen K (2007) Calibration of trapping force and response function of optical tweezers in viscoelastic media. J Opt A Pure Appl Opt 9(8):S239–S250

    Article  Google Scholar 

  39. Atakhorrami M, Sulkowska JI, Addas KM et al (2006) Correlated fluctuations of microparticles in viscoelastic solutions: Quantitative measurement of material properties by microrheology in the presence of optical traps. Phys Rev E 73(6):061501

    Article  CAS  Google Scholar 

  40. Mizuno D, Head DA, MacKintosh FC et al (2008) Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 41(19):7194–7202

    Article  CAS  Google Scholar 

  41. Lee H, Ferrer JM, Nakamura F et al (2010) Passive and active microrheology for cross-linked F-actin networks in vitro. Acta Biomater 6(4):1207–1218

    Article  CAS  Google Scholar 

  42. Lau AWC, Hoffman BD, Davies A et al (2003) Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett 91(19):198101

    Article  CAS  Google Scholar 

  43. Robert D, Nguyen T-H, Gallet F et al (2010) In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS One 5(4):e10046

    Article  Google Scholar 

  44. Andersson M, Czerwinski F, Oddershede LB (2011) Optimizing active and passive calibration of optical tweezers. J Opt 13(4):044020

    Article  Google Scholar 

  45. Oddershede L, Greco S, Nørrelykke SF et al (2001) Optical tweezers: probing biological surfaces. Probe Microsc 2:129

    CAS  Google Scholar 

  46. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23(1):7–9

    Article  CAS  Google Scholar 

  47. Pralle A, Prummer M, Florin EL et al (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44(5):378–386

    Article  CAS  Google Scholar 

  48. Leijnse N, Jeon JH, Loft S et al (2012) Diffusion inside living human cells. Eur Phys J Spec Top 204(1):75–84

    Article  CAS  Google Scholar 

  49. Dreyer JK, Berg-Sorensen K, Oddershede L (2004) Improved axial position detection in optical tweezers measurements. Appl Opt 43(10):1991–1995

    Article  Google Scholar 

  50. Richardson AC, Reihani SNS, Oddershede LB (2008) Non-harmonic potential of a single beam optical trap. Opt Express 16(20):15709–15717

    Article  CAS  Google Scholar 

  51. Mizuno D, Tardin C, Schmidt CF et al (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373

    Article  CAS  Google Scholar 

  52. Mizuno D, Bacabac R, Tardin C et al (2009) High-resolution probing of cellular force transmission. Phys Rev Lett 102(16):168102

    Article  Google Scholar 

  53. Ott D, Reihani SN, Oddershede LB (2014) Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering. Rev Sci Instrum 85(5):053108

    Article  Google Scholar 

  54. Jeon J-H, Tejedor V, Burov S et al (2011) In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett 106(4):048103

    Article  Google Scholar 

  55. Selhuber-Unkel C, Yde P, Berg-Sorensen K et al (2009) Variety in intracellular diffusion during the cell cycle. Phys Biol 6(2):025015

    Article  Google Scholar 

  56. Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78(4):1736–1747

    Article  CAS  Google Scholar 

  57. Wei M-T, Zaorski A, Yalcin HC et al (2008) A comparative study of living cell micromechanical properties by oscillatory optical tweezers. Opt Express 16(12):8594–8603

    Article  CAS  Google Scholar 

  58. Czerwinski F, Richardson AC, Oddershede LB (2009) Quantifying noise in optical tweezers by allan variance. Opt Express 17(15):13255–13269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirstine Berg-Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ritter, C.M., Mas, J., Oddershede, L., Berg-Sørensen, K. (2017). Quantifying Force and Viscoelasticity Inside Living Cells Using an Active–Passive Calibrated Optical Trap. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics