Skip to main content

Exact Theory of Optical Tweezers and Its Application to Absolute Calibration

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps that led to the development of the theory over the past 15 years are outlined. The results are applicable to a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Protocols for implementing absolute calibration are given, explaining how to measure all required experimental parameters, and including a link to an applet for stiffness calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Radius of trapped particle

F :

Trapping force

h :

Distance from microsphere center to coverslip

k z , k ρ :

Axial and transverse trap stiffness, respectively

λ, λ 0 :

Generic and vacuum wavelength, respectively

NA:

Objective numerical aperture

n :

Generic refractive index

n g, n p, n w :

Refractive indices of glass, trapped particle and water, respectively

OT:

Optical tweezers

P :

Incident laser beam power

Q z , Q ρ :

Axial and transverse dimensionless efficiency factors, respectively

θ o :

Focused laser beam opening angle

ω :

Laser beam angular frequency

z eq :

Axial equilibrium position

References

  1. Neuman KC, Block SM (2006) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  Google Scholar 

  2. Le Gall A, Perronet K, Dulin D et al (2010) Simultaneous calibration of optical tweezers spring constant and position detector response. Opt Express 18:26469–26474

    Article  Google Scholar 

  3. Lorenz L (1890) Sur la lumière réfléchie et réfractée par une sphère (surface) transparente. Kongel Danske Vidensk Selskabs Skrifter 6:1

    Google Scholar 

  4. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann der Phys (Leipzig) 25:377–445

    Article  CAS  Google Scholar 

  5. Debye P (1909) Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie. Ann der Phys (Leipzig) 89:755–776

    Article  Google Scholar 

  6. Nussenzveig HM (1959) Diffraction theory in the k-representation. An Acad Bras Cienc 31:515–521, Reproduced in Oughston K E (editor) (1992) Selected Papers on scalar wave diffraction. SPIE Press, NY

    Google Scholar 

  7. Bouwkamp CJ (1954) Diffraction theory. Rep Prog Phys 17:35–100

    Article  Google Scholar 

  8. Maia Neto PA, Nussenzveig HM (2000) Theory of optical tweezers. Europhys Lett 50:702–708

    Article  CAS  Google Scholar 

  9. Richards B, Wolf E (1959) Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc Roy Soc Lond A 253:358–379

    Article  Google Scholar 

  10. Nussenzveig HM (1992) Diffraction effects in semiclassical scattering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Ashkin A (2006) Optical trapping and manipulation of neutral particles using lasers. World Scientific, Singapore, pp 201–202, 204

    Book  Google Scholar 

  12. Guillon M, Dholakia K, McGloin D (2008) Optical trapping and spectral analysis of aerosols with a supercontinuum laser source. Opt Express 16(11):7655–7664

    Article  CAS  Google Scholar 

  13. Mazolli A, Maia Neto PA, Nussenzveig HM (2003) Theory of trapping forces in optical tweezers. Proc Roy Soc Lond A 459:3021–3041

    Article  Google Scholar 

  14. Dutra RS, Viana NB, Maia Neto PA et al (2007) Polarization effects in optical tweezers. J Opt A Pure Appl Opt 9:S221–S227

    Article  Google Scholar 

  15. Török P, Varga P, Laczik Z et al (1995) Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation. J Opt Soc Am A 12(2):325–332

    Article  Google Scholar 

  16. Viana NB, Rocha MS, Mesquita ON et al (2007) Towards absolute calibration of optical tweezers. Phys Rev E 75:021914-1–021914-14

    Article  Google Scholar 

  17. Roichman Y, Sun B, Stolarski A et al (2008) Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys Rev Lett 101:128301-1–128301-4

    Article  Google Scholar 

  18. Dutra RS, Viana NB, Maia Neto PA et al (2014) Absolute calibration of forces in optical tweezers. Phys Rev A 90:013825-1–013825-13

    Article  Google Scholar 

  19. Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Novotny L, Grober RD, Karrai K (2001) Reflected image of a strongly focused spot. Opt Lett 26:789–791

    Article  CAS  Google Scholar 

  21. Schäffer E, Norrelykke SF, Howard J (2007) Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 23:3654–3665

    Article  Google Scholar 

  22. Viana NB, Rocha MS, Mesquita ON et al (2006) Characterization of objective transmittance for optical tweezers. Appl Opt 45:4263–4269

    Article  CAS  Google Scholar 

  23. Misawa H, Koshioka M, Sasak K et al (1991) Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water. J Appl Phys 70:3829–3836

    Article  CAS  Google Scholar 

  24. Roichman Y, Waldron A, Gardel E et al (2006) Optical traps with geometric aberrations. Appl Opt 45:3425–3429

    Article  Google Scholar 

  25. López-Quesada C, Andilla J, Martín-Badosa E (2009) Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor. Appl Opt 48:1084–1090

    Article  Google Scholar 

  26. Neves AAR, Pisignano D (2012) Effect of finite terms on the truncation error of Mie series. Opt Lett 37:2418–2420

    Article  Google Scholar 

  27. Wiscombe WJ (1979) Mie scattering calculations: advances in technique and fast, vector-speed computer codes. Atmospheric Analysis and Prediction Division, National Center for Atmospheric Research, Boulder, CO

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies CNPq, FAPERJ, and INCT Fluidos Complexos.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dutra, R.S., Viana, N.B., Neto, P.A.M., Nussenzveig, H.M. (2017). Exact Theory of Optical Tweezers and Its Application to Absolute Calibration. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics