Skip to main content

Deciphering the Molecular Mechanism of the Bacteriophage φ29 DNA Packaging Motor

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

The past decade has seen an explosion in the use of single-molecule approaches to study complex biological processes. One such approach—optical trapping—is particularly well suited for investigating molecular motors, a diverse group of macromolecular complexes that convert chemical energy into mechanical work, thus playing key roles in virtually every aspect of cellular life. Here we describe how to use high-resolution optical tweezers to investigate the mechanism of the bacteriophage φ29 DNA packaging motor, a ring-shaped ATPase responsible for genome packing during viral assembly. This system illustrates how to use single-molecule techniques to uncover novel, often unexpected, principles of motor operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hetherington CL, Moffitt JR, Jardine PJ et al (2012) Viral DNA packaging motors. In: Goldman YE, Ostap EM (eds) Molecular motors and motility. Elsevier, Oxford, pp 420–446

    Google Scholar 

  2. Morais MC (2012) The dsDNA packaging motor in bacteriophage φ29. In: Rossmann MG, Rao VB (eds) Viral molecular machines. Springer, New York, NY, pp 511–547

    Chapter  Google Scholar 

  3. Smith DE, Tans SJ, Smith SB et al (2001) The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  CAS  Google Scholar 

  4. Chemla YR, Aathavan K, Michaelis J et al (2005) Mechanism of force generation of a viral DNA packaging motor. Cell 122:683–692

    Article  CAS  Google Scholar 

  5. Moffitt JR, Chemla YR, Aathavan K et al (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–450

    Article  CAS  Google Scholar 

  6. Aathavan K, Politzer AT, Kaplan A et al (2009) Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461:669–673

    Article  CAS  Google Scholar 

  7. Chistol G, Liu S, Hetherington CL et al (2012) High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 151:1017–1028

    Article  CAS  Google Scholar 

  8. Liu S, Chistol G, Hetherington CL et al (2014) A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157:702–713

    Article  CAS  Google Scholar 

  9. Liu S, Chistol G, Bustamante C (2014) Mechanical operation and intersubunit coordination of ring-shaped molecular motors: insights from single-molecule studies. Biophys J 106:1844–1858

    Article  CAS  Google Scholar 

  10. Zhao W, Morais MC, Anderson DL et al (2008) Role of the CCA bulge of prohead RNA of bacteriophage φ29 in DNA packaging. J Mol Biol 383:520–528

    Article  CAS  Google Scholar 

  11. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  12. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612

    Article  Google Scholar 

  13. Bustamante C, Marko JF, Siggia ED et al (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600

    Article  CAS  Google Scholar 

  14. Bustamante C, Chemla YR, Moffitt JR (2008) High-resolution dual-trap optical tweezers with differential detection. In: Selvin PR, Ha T (eds) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 297–324

    Google Scholar 

  15. Grimes S, Jardine PJ, Anderson D (2002) Bacteriophage φ29 DNA packaging. Adv Virus Res 58:255–294

    Article  CAS  Google Scholar 

  16. Rickgauer JP, Fuller DN, Grimes S et al (2008) Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage φ29. Biophys J 94:159–167

    Article  CAS  Google Scholar 

  17. Kalafut B, Visscher K (2008) An objective, model-independent method for detection of non-uniform steps in noisy signals. Comput Phys Commun 179:716–723

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shelley Grimes, Paul Jardine, and Dwight Anderson for developing the in vitro packaging system and critically reading the manuscript. We thank Gheorghe Chistol, Craig Hetherington, Jeffrey Moffitt, Yann Chemla, Aathavan Karunakaran, Douglas Smith, Sander Tans, Adam Politzer, Ariel Kaplan, Thorsten Hugel, Jens Michaelis, and Steven Smith for their contributions to the development of the single-molecule packaging assay, optical tweezers instrumentation, and data analysis tools. The authors are supported by NIH grants R01GM071552 (to C.B.) and K99GM107365 (to S.L.) and a UC MEXUS-CONACYT doctoral fellowship (to S.T.). C.B. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixin Liu or Carlos Bustamante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, S., Tafoya, S., Bustamante, C. (2017). Deciphering the Molecular Mechanism of the Bacteriophage φ29 DNA Packaging Motor. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics