Skip to main content

Storage and Lyophilization of Pure Proteins

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1485))

Abstract

This article outlines empirical procedures for the storage of pure proteins with preservation of high levels of biological activity. It describes simple and workable means of preventing microbial contamination and proteolytic degradation, and the use of various types of stabilizing additives. It sets out the principles of lyophilization (otherwise known as freeze-drying, a complex process comprising freezing, primary dying, and secondary drying stages). There follows a general procedure for the use of lyophilizer apparatus with emphasis on best practice and on pitfalls to avoid. The use of modulated differential scanning calorimetry to measure the glass transition temperature, a key parameter in the design and successful operation of lyophilization processes, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilisation. Trends Biotechnol 11:88–95

    Article  CAS  PubMed  Google Scholar 

  2. Sluzky V, Klibanov AM, Langer R (1992) Mechanism of insulin aggregation and stabilisation in agitated aqueous solutions. Biotechnol Bioeng 40:895–903

    Article  CAS  PubMed  Google Scholar 

  3. Liu WR, Langer R, Klibanov AM (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng 37:177–184

    Article  CAS  PubMed  Google Scholar 

  4. Costantino HR, Langer R, Klibanov AM (1995) Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin. Biotechnology 13:493–496

    Article  CAS  PubMed  Google Scholar 

  5. Quax WJ (1993) Thermostable glucose isomerases. Trends Food Sci Technol 4:31–34

    Article  CAS  Google Scholar 

  6. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    Article  CAS  PubMed  Google Scholar 

  7. Franks F (1993) Conformational stability of proteins. In: Franks F (ed) Protein biotechnology: isolation, characterisation and stabilisation. Humana, Totowa, NJ, pp 395–436

    Chapter  Google Scholar 

  8. Sadana A (1988) Enzyme deactivation. Biotechnol Adv 6:349–446

    Article  CAS  PubMed  Google Scholar 

  9. Thuma RS, Giegel JL, Posner AH (1987) Manufacture of quality control materials. In: Howanitz PJ, Howanitz JH (eds) Laboratory quality assurance. McGraw-Hill, New York, pp 101–123

    Google Scholar 

  10. Franks F (1990) Freeze-drying: from empiricism to predictability. Cryo Lett 11:93–110

    Google Scholar 

  11. Franks F (1998) Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm 45:221–229

    Article  CAS  PubMed  Google Scholar 

  12. Pikal MJ (1990) Freeze-drying of proteins. Part 1: process design. BioPharmacology 3:18–27

    CAS  Google Scholar 

  13. Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244–255

    Article  CAS  PubMed  Google Scholar 

  14. Pikal MJ (1990) Freeze-drying of proteins. Part 2: formulation selection. BioPharmacology 3:26–30

    CAS  Google Scholar 

  15. Franks F, Hatley RHM, Mathias SF (1991) Materials science and the production of shelf-stable biologicals. Pharm Technol Int 3:24–34

    Google Scholar 

  16. Oetjen G-W, Haseley P (2008) Freeze-drying. Wiley-VCH, Weinheim, Germany, p 407. ISBN 9783527612499

    Google Scholar 

  17. Oetjen G-W (2008) Freeze-drying. Wiley-VCH, Weinheim, Germany, p 285. ISBN 9783527614097

    Google Scholar 

  18. Bhatnagar BS, Tchessalov S, Lewis LM, Johnson J (2013) Freeze drying of biologics, 4th edn, Encyclopedia of pharmaceutical science and technology. Taylor & Francis, London, pp 1673–1722

    Google Scholar 

  19. Beynon RJ, Bond JS (1987) Proteolytic enzymes: a practical approach. Oxford University Press, Oxford, UK (2nd edition 2001)

    Google Scholar 

  20. Scopes RK (1994) Protein purification: principles and practice, 2nd edn. Springer, Berlin, pp 317–324

    Book  Google Scholar 

  21. Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  22. Timasheff SN, Arakawa T (1997) Stabilisation of protein structure by solvents. In: Creighton TE (ed) Protein structure: a practical approach, 2nd edn. IRL Press, Oxford, UK, pp 349–364

    Google Scholar 

  23. Kaushik JK, Bhat R (1998) Thermal stability of proteins in aqueous polyol solutions. J Phys Chem B 102:7058–7066

    Article  CAS  Google Scholar 

  24. Qu Y, Bolen CL, Bolen DW (1998) Osmolyte-driven contraction of a random coil protein. Proc Natl Acad Sci U S A 95:9268–9273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anjum F, Rishi V, Ahmad F (2000) Compatibility of osmolytes with Gibbs energy of stabilisation of proteins. Biochim Biophys Acta 1476:75–84

    Article  CAS  PubMed  Google Scholar 

  26. Combes D, Yoovidhya T, Girbal E, Willemot R-M, Monsan P (1987) Mechanism of enzyme stabilisation. Ann N Y Acad Sci 501:59–62

    Article  CAS  PubMed  Google Scholar 

  27. Tombs MP (1985) Stability of enzymes. J Appl Biochem 7:3–24

    CAS  PubMed  Google Scholar 

  28. Klibanov AM (1983) Stabilisation of enzymes against thermal inactivation. Adv Appl Microbiol 29:1–25

    Article  CAS  PubMed  Google Scholar 

  29. Schein CH (1990) Solubility as a function of protein structure and solvent components. Biotechnology 8:308–317

    Article  CAS  PubMed  Google Scholar 

  30. Andersson MM, Hatti-Kaul R (1999) Protein stabilising effect of polyethyleneimine. J Biotechnol 72:21–31

    Article  CAS  Google Scholar 

  31. Marcozzi G, Di Domenico C, Spreti N (1998) Effects of surfactants on the stabilisation of the bovine lactoperoxidase activity. Biotechnol Prog 14:653–656

    Article  CAS  PubMed  Google Scholar 

  32. Volkin DB, Klibanov AM (1989) Minimising protein inactivation. In: Creighton TE (ed) Protein function: a practical approach, 1st edn. IRL Press, Oxford, UK, pp 1–24

    Google Scholar 

  33. Shah NK, Shah DN, Upadhyay CM, Nehete PN, Kothari RM, Hegde MV (1989) An economical, upgraded, stabilised and efficient preparation of amyloglucosidase. J Biotechnol 10:267–276

    Article  CAS  Google Scholar 

  34. Hatley RHM, Franks F, Mathias SF (1987) The stabilisation of labile biomolecules by undercooling. Process Biochem 22:169–172

    CAS  Google Scholar 

  35. Franks F (1993) Storage stabilisation of proteins. In: Franks F (ed) Protein biotechnology: isolation, characterisation and stabilisation. Humana, Totowa, NJ, pp 489–531

    Chapter  Google Scholar 

  36. Franks F, Hatley RHM (1992) Storage of materials. US Patent no. 5,098,893

    Google Scholar 

  37. Gibson TD, Woodward JR (1991) Enzyme stabilisation. Patent application PCT/GB91/00443, Publ. No. Wo91/14773

    Google Scholar 

  38. Gibson TD, Higgins IJ, Woodward JR (1992) Stabilisation of analytical enzymes using a novel polymer-carbohydrate system and the production of a stabilised, single reagent for alcohol analysis. Analyst 117:1293–1297

    Article  CAS  Google Scholar 

  39. Walters RH, Bhatnagar B, Tchessalov S, Izutsu K, Tsumoto K, Ohtake S (2014) Next generation drying technologies for pharmaceutical applications. J Pharm Sci 103:2673–2695. doi:10.1002/jps.23998

    Article  CAS  PubMed  Google Scholar 

  40. Jangle RD, Pisal SS (2012) Vacuum foam drying: an alternative to lyophilization for biomolecule preservation. Indian J Pharm Sci 74:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang XC, Pikal MJ (2004) Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21:191–200

    Article  CAS  PubMed  Google Scholar 

  42. Wang W (2000) Lyophilisation and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    Article  CAS  PubMed  Google Scholar 

  43. Roy ML, Pikal MJ (1989) Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor. J Parenter Sci Technol 43:60–66

    CAS  PubMed  Google Scholar 

  44. Searles J, Carpenter J, Randolph TW (2001) Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg′ in pharmaceutical lyophilization. J Pharm Sci 90:872–887

    Google Scholar 

  45. Chang BS, Patro SY (2004) Freeze-drying process development for protein pharmaceuticals, Chapter 4. In: Costantino HR, Pikal MJ (eds) Lyophilization of biopharmaceuticals. American Association of Pharmaceutical Scientists (AAPS), Arlington, VA, pp 113–138

    Google Scholar 

  46. Adams GD, Ramsay JR (1996) Optimizing the lyophilization cycle and the consequences of collapse on the pharmaceutical acceptability of Erwinia L-asparaginase. J Pharm Sci 85:1301–1305

    Article  CAS  PubMed  Google Scholar 

  47. Pikal MJ, Shah S, Roy ML, Putman R (1990) The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure. Int J Pharm 60:203–207

    Article  CAS  Google Scholar 

  48. Bhatnagar BS, Bogner RH, Pikal MJ (2007) Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol 12:505–523

    Article  CAS  PubMed  Google Scholar 

  49. Heller MC, Carpenter JC, Randolph TW (1999) Protein formulation and lyophilization cycle design. Biotechnol Bioeng 63:166–174

    Article  CAS  PubMed  Google Scholar 

  50. Franks F, Murase N (1992) Nucleation and crystallisation in aqueous systems during drying: theory and practice. Pure Appl Chem 64:1667–1672

    Article  CAS  Google Scholar 

  51. Blanchard JS (1984) Buffers for enzymes. Methods Enzymol 104:404–415

    Article  CAS  PubMed  Google Scholar 

  52. Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997) Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res 14:969–975

    Article  CAS  PubMed  Google Scholar 

  53. Kirkwood TBL (1984) Design and analysis of accelerated degradation tests for the stability of biological standards III. Principles of design. J Biol Stand 12:215–224

    Article  CAS  PubMed  Google Scholar 

  54. Jerne NK, Perry WLM (1956) The stability of biological standards. Bull World Health Organ 14:167–182

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC (1990) Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345:86–89

    Article  CAS  PubMed  Google Scholar 

  56. Shamblin SL (2004) The role of water in physical transformations in freeze dried products. In: Costantino HR, Pikal MJ (eds) Lyophilization of biopharmaceuticals. AAPS (American Association of Pharmaceutical Scientists) Press, Arlington, VA, pp 229–270

    Google Scholar 

  57. Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12

    Article  CAS  PubMed  Google Scholar 

  58. Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11:471–477

    Article  CAS  PubMed  Google Scholar 

  59. Pikal MJ, Rambhatla S, Ramot R (2002) The impact of the freezing stage in lyophilisation: effects of the ice nucleation temperature on process design and product quality. Am Pharm Rev 5:48–52

    Google Scholar 

  60. Rambhatla S, Ramot R, Bhugra C, Pikal MJ (2004) Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization of the degree of super cooling. AAPS PharmSciTech 5:e58

    Article  PubMed  Google Scholar 

  61. Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12:799–806

    Article  CAS  PubMed  Google Scholar 

  62. Bell LN, Hageman MJ (1994) Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: aspartame degradation. J Agric Food Chem 42:2398–2401

    Article  CAS  Google Scholar 

  63. Lechuga-Ballesteros D, Miller DP, Duddu SP (2004) Thermal analysis of lyophilized pharmaceutical and protein formulation. In: Costantino HR, Pikal MJ (eds) Lyophilization of biopharmaceuticals. AAPS (American Association of Pharmaceutical Scientists) Press, Arlington, VA, pp 271–336

    Google Scholar 

  64. Franks F (1994) Accelerated stability testing of bioproducts: attractions and pitfalls. Trends Biotechnol 12:114–117

    Article  CAS  PubMed  Google Scholar 

  65. Awotwe-Otoo D, Agarabi C, Khan MA (2014) An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations. J Pharm Sci 103:2042–2052. doi:10.1002/jps.24005

    Article  CAS  PubMed  Google Scholar 

  66. Patel SM, Pikal MJ (2013) Lyophilization process design space. J Pharm Sci 102:3883–3887. doi:10.1002/jps.23703

    Article  CAS  PubMed  Google Scholar 

  67. Kasper JC, Wiggenhorn M, Resch M, Friess W (2013) Implementation and evaluation of an optical fiber system as novel process monitoring tool during lyophilization. Eur J Pharm Biopharm 83:449–459. doi:10.1016/j.ejpb.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  68. Hedoux A, Paccou L, Achir S, Guinet Y (2012) In situ monitoring of proteins during lyophilization using micro-Raman spectroscopy: a description of structural changes induced by dehydration. J Pharm Sci 101:2316–2326. doi:10.1002/jps.23172

    Article  CAS  PubMed  Google Scholar 

  69. Kasper JC, Winter G, Friess W (2013) Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm 85:162–169. doi:10.1016/j.ejpb.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  70. Kasper JC, Friess W (2011) The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm 78:248–263. doi:10.1016/j.ejpb.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  71. Kodama T, Sawada H, Hosomi H, Takeuchi M, Wakiyama N, Yonemochi E, Terada K (2014) Optimization of primary drying condition for pharmaceutical lyophilization using a novel simulation program with a predictive model for dry layer resistance. Chem Pharm Bull 62:153–159

    Article  CAS  PubMed  Google Scholar 

  72. Rambhatla S, Tchessalov S, Pikal MJ (2006) Heat and mass transfer scale-up issues during freeze-drying, III: Control and characterization of dryer differences via operational qualification tests. AAPS PharmSciTech 7:39

    Article  Google Scholar 

  73. Fonte P, Araujo F, Seabra V, Reis S, van de Weert M, Sarmento B (2015) Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Int J Pharm 496:850–862. doi:10.1016/j.ijpharm.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  74. Roughton BC, Iyer LK, Bertelsen E, Topp EM, Camarda KV (2013) Protein aggregation and lyophilization: protein structural descriptors as predictors of aggregation propensity. Comput Chem Eng 58:369–377. doi:10.1016/j.compchemeng.2013.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciarán Ó’Fágáin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ó’Fágáin, C., Colliton, K. (2017). Storage and Lyophilization of Pure Proteins. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 1485. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6412-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6412-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6410-9

  • Online ISBN: 978-1-4939-6412-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics