Skip to main content

Tagging Recombinant Proteins to Enhance Solubility and Aid Purification

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1485))

Abstract

Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide “tags” has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikaido H (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55–58

    Article  CAS  PubMed  Google Scholar 

  2. di Guan C, Li P, Riggs PD, Inouye H (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67:21–30

    Article  PubMed  Google Scholar 

  3. Pattenden LK, Thomas WG (2008) Amylose affinity chromatography of maltose-binding protein: purification by both native and novel matrix-assisted dialysis refolding methods. Methods Mol Biol 421:169–189

    CAS  PubMed  Google Scholar 

  4. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sachdev D, Chirgwin JM (2000) Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol 326:312–321

    Article  CAS  PubMed  Google Scholar 

  6. Riggs P (2000) Expression and purification of recombinant proteins by fusion to maltose-binding protein. Mol Biotechnol 15:51–63

    Article  CAS  PubMed  Google Scholar 

  7. Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J (2004) Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol 4:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  9. Kataeva I, Chang J, Xu H, Luan CH, Zhou J, Uversky VN, Lin D, Horanyi P, Liu ZJ, Ljungdahl LG, Rose J, Luo M, Wang BC (2005) Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Escherichia coli. J Proteome Res 4:1942–1951

    Article  CAS  PubMed  Google Scholar 

  10. Busso D, Delagoutte-Busso B, Moras D (2005) Construction of a set gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal Biochem 343:313–321

    Article  CAS  PubMed  Google Scholar 

  11. Braud S, Moutiez M, Belin P, Abello N, Drevet P, Zinn-Justin S, Courcon M, Masson C, Dassa J, Charbonnier JB, Boulain JC, Menez A, Genet R, Gondry M (2005) Dual expression system suitable for high-throughput fluorescence-based screening and production of soluble proteins. J Proteome Res 4:2137–2147

    Article  CAS  PubMed  Google Scholar 

  12. Nallamsetty S, Waugh DS (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr Purif 45:175–182

    Article  CAS  PubMed  Google Scholar 

  13. Randall LL, Hardy SJ, Topping TB, Smith VF, Bruce JE, Smith RD (1998) The interaction between the chaperone SecB and its ligands: evidence for multiple subsites for binding. Protein Sci 7:2384–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamilton SR, O’Donnell JB Jr, Hammet A, Stapleton D, Habinowski SA, Means AR, Kemp BE, Witters LA (2002) AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit. Biochem Biophys Res Commun 293:892–898

    Article  CAS  PubMed  Google Scholar 

  15. Nallamsetty S, Austin BP, Penrose KJ, Waugh DS (2005) Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci 14:2964–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nallamsetty S, Waugh DS (2007) A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protoc 2:383–391

    Article  CAS  PubMed  Google Scholar 

  17. Routzahn KM, Waugh DS (2002) Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J Struct Funct Genomics 2:83–92

    Article  CAS  PubMed  Google Scholar 

  18. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  PubMed  Google Scholar 

  19. Hunt I (2005) From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 40:1–22

    Article  CAS  PubMed  Google Scholar 

  20. Kaplan W, Husler P, Klump H, Erhardt J, Sluis-Cremer N, Dirr H (1997) Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci 6:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frangioni JV, Neel BG (1993) Use of a general purpose mammalian expression vector for studying intracellular protein targeting: identification of critical residues in the nuclear lamin A/C nuclear localization signal. J Cell Sci 105(Pt 2):481–488

    CAS  PubMed  Google Scholar 

  22. Vikis HG, Guan KL (2004) Glutathione-S-transferase-fusion based assays for studying protein-protein interactions. Methods Mol Biol 261:175–186

    CAS  PubMed  Google Scholar 

  23. Singh CR, Asano K (2007) Localization and characterization of protein-protein interaction sites. Methods Enzymol 429:139–161

    Article  CAS  PubMed  Google Scholar 

  24. Jung JW, Jung SH, Kim HS, Yuk JS, Park JB, Kim YM, Han JA, Kim PH, Ha KS (2006) High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor. Proteomics 6:1110–1120

    Article  CAS  PubMed  Google Scholar 

  25. Saaem I, Papasotiropoulos V, Wang T, Soteropoulos P, Libera M (2007) Hydrogel-based protein nanoarrays. J Nanosci Nanotechnol 7:2623–2632

    Article  CAS  PubMed  Google Scholar 

  26. Zhan Y, Song X, Zhou GW (2001) Structural analysis of regulatory protein domains using GST-fusion proteins. Gene 281:1–9

    Article  CAS  PubMed  Google Scholar 

  27. Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng G, Yang YC (2004) ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. J Biol Chem 279:42410–42421

    Article  CAS  PubMed  Google Scholar 

  29. Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15:536–541

    Article  CAS  PubMed  Google Scholar 

  30. Kawabe Y, Seki M, Seki T, Wang WS, Imamura O, Furuichi Y, Saitoh H, Enomoto T (2000) Covalent modification of the Werner’s syndrome gene product with the ubiquitin-related protein, SUMO-1. J Biol Chem 275:20963–20966

    Article  CAS  PubMed  Google Scholar 

  31. Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melchior F (2000) SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626

    Article  CAS  PubMed  Google Scholar 

  33. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280:275–286

    Article  CAS  PubMed  Google Scholar 

  34. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  PubMed  Google Scholar 

  35. Johnson ES, Blobel G (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147:981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374

    Article  CAS  PubMed  Google Scholar 

  37. Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci 13:1331–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:75–86

    Article  CAS  PubMed  Google Scholar 

  39. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zuo X, Li S, Hall J, Mattern MR, Tran H, Shoo J, Tan R, Weiss SR, Butt TR (2005) Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J Struct Funct Genomics 6:103–111

    Article  CAS  PubMed  Google Scholar 

  41. Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    Article  CAS  PubMed  Google Scholar 

  42. Satakarni M, Curtis R (2011) Production of recombinant peptides as fusions with SUMO. Protein Expr Purif 78:113–119

    Article  CAS  PubMed  Google Scholar 

  43. Zuo X, Mattern MR, Tan R, Li S, Hall J, Sterner DE, Shoo J, Tran H, Lim P, Sarafianos SG, Kazi L, Navas-Martin S, Weiss SR, Butt TR (2005) Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expr Purif 42:100–110

    Article  CAS  PubMed  Google Scholar 

  44. Lee J, Kim SH (2009) High-throughput T7 LIC vector for introducing C-terminal poly-histidine tags with variable lengths without extra sequences. Protein Expr Purif 63:58–61

    Article  CAS  PubMed  Google Scholar 

  45. Catic A, Misaghi S, Korbel GA, Ploegh HL (2007) ElaD, a deubiquitinating protease expressed by E. coli. PLoS One 2:e381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu L, Spurrier J, Butt TR, Strickler JE (2008) Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. Protein Expr Purif 62:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peroutka RJ, Elshourbagy N, Piech T, Butt TR (2008) Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2. Protein Sci 17:1586–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Panavas T, Sanders C, Butt TR (2009) SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol 497:303–317

    Article  CAS  PubMed  Google Scholar 

  49. Katti SK, LeMaster DM, Eklund H (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol 212:167–184

    Article  CAS  PubMed  Google Scholar 

  50. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11:187–193

    Article  CAS  Google Scholar 

  51. Smith PA, Tripp BC, DiBlasio-Smith EA, Lu Z, LaVallie ER, McCoy JM (1998) A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli. Nucleic Acids Res 26:1414–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. LaVallie ER, Lu Z, Diblasio-Smith EA, Collins-Racie LA, McCoy JM (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol 326:322–340

    Article  CAS  PubMed  Google Scholar 

  53. Dummler A, Lawrence AM, de Marco A (2005) Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact 4:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hammarstrom M, Hellgren N, van Den Berg S, Berglund H, Hard T (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim S, Lee SB (2008) Soluble expression of archaeal proteins in Escherichia coli by using fusion-partners. Protein Expr Purif 62:116–119

    Article  CAS  PubMed  Google Scholar 

  56. Bogomolovas J, Simon B, Sattler M, Stier G (2009) Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 64:16–23

    Article  CAS  PubMed  Google Scholar 

  57. Derewenda ZS (2004) The use of recombinant methods and molecular engineering in protein crystallization. Methods 34:354–363

    Article  CAS  PubMed  Google Scholar 

  58. Corsini L, Hothorn M, Scheffzek K, Sattler M, Stier G (2008) Thioredoxin as a fusion tag for carrier-driven crystallization. Protein Sci 17:2070–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gusarov I, Nudler E (2001) Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107:437–449

    Article  CAS  PubMed  Google Scholar 

  60. Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    Article  CAS  PubMed  Google Scholar 

  61. Harrison RG (2000) Expression of soluble heterologous proteins via fusion with NusA protein. inNovation 11:4–7

    Google Scholar 

  62. Cabrita LD, Dai W, Bottomley SP (2006) A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production. BMC Biotechnol 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Costa SJ, Almeida A, Castro A, Domingues L, Besir H (2013) The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Appl Microbiol Biotechnol 97:6779–6791

    Article  CAS  PubMed  Google Scholar 

  64. Costa SJ, Coelho E, Franco L, Almeida A, Castro A, Domingues L (2013) The Fh8 tag: a fusion partner for simple and cost-effective protein purification in Escherichia coli. Protein Expr Purif 92:163–170

    Article  CAS  PubMed  Google Scholar 

  65. Ohana RF, Encell LP, Zhao K, Simpson D, Slater MR, Urh M, Wood KV (2009) HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expr Purif 68:110–120

    Article  CAS  PubMed  Google Scholar 

  66. Graslund S, Eklund M, Falk R, Uhlen M, Nygren PA, Stahl S (2002) A novel affinity gene fusion system allowing protein A-based recovery of non-immunoglobulin gene products. J Biotechnol 99:41–50

    Article  PubMed  Google Scholar 

  67. Zhao Y, Benita Y, Lok M, Kuipers B, van der Ley P, Jiskoot W, Hennink WE, Crommelin DJ, Oosting RS (2005) Multi-antigen immunization using IgG binding domain ZZ as carrier. Vaccine 23:5082–5090

    Article  CAS  PubMed  Google Scholar 

  68. Cheng Y, Patel DJ (2004) An efficient system for small protein expression and refolding. Biochem Biophys Res Commun 317:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Card PB, Gardner KH (2005) Identification and optimization of protein domains for NMR studies. Methods Enzymol 394:3–16

    Article  CAS  PubMed  Google Scholar 

  70. Bao WJ, Gao YG, Chang YG, Zhang TY, Lin XJ, Yan XZ, Hu HY (2006) Highly efficient expression and purification system of small-size protein domains in Escherichia coli for biochemical characterization. Protein Expr Purif 47:599–606

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Z, Li ZH, Wang F, Fang M, Yin CC, Zhou ZY, Lin Q, Huang HL (2002) Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif 26:218–228

    Article  CAS  PubMed  Google Scholar 

  72. Chatterjee DK, Esposito D (2006) Enhanced soluble protein expression using two new fusion tags. Protein Expr Purif 46:122–129

    Article  CAS  PubMed  Google Scholar 

  73. Zhang YB, Howitt J, McCorkle S, Lawrence P, Springer K, Freimuth P (2004) Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expr Purif 36:207–216

    Article  CAS  PubMed  Google Scholar 

  74. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    Article  CAS  PubMed  Google Scholar 

  75. Storcksdieck genannt Bonsmann S, Hurrell RF (2007) Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J Food Sci 72:S019–S029

    CAS  PubMed  Google Scholar 

  76. Swain JH, Tabatabai LB, Reddy MB (2002) Histidine content of low-molecular-weight beef proteins influences nonheme iron bioavailability in Caco-2 cells. J Nutr 132:245–251

    CAS  PubMed  Google Scholar 

  77. Taylor PG, Martinez-Torres C, Romano EL, Layrisse M (1986) The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. Am J Clin Nutr 43:68–71

    CAS  PubMed  Google Scholar 

  78. Porath J (1992) Immobilized metal Ion affinity chromatography. Protein Expr Purif 3:263–281

    Article  CAS  PubMed  Google Scholar 

  79. Ueda EK, Gout PW, Morganti L (2003) Current and prospective applications of metal ion-protein binding. J Chromatogr A 988:1–23

    Article  CAS  PubMed  Google Scholar 

  80. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  CAS  PubMed  Google Scholar 

  81. Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    Article  PubMed  CAS  Google Scholar 

  82. Hutchinson MH, Chase HA (2006) Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography. J Chromatogr A 1128:125–132

    Article  CAS  PubMed  Google Scholar 

  83. Rogl H, Kosemund K, Kuhlbrandt W, Collinson I (1998) Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Lett 432:21–26

    Article  CAS  PubMed  Google Scholar 

  84. Zouhar J, Nanak E, Brzobohaty B (1999) Expression, single-step purification, and matrix-assisted refolding of a maize cytokinin glucoside-specific beta-glucosidase. Protein Expr Purif 17:153–162

    Article  CAS  PubMed  Google Scholar 

  85. Dong XY, Chen LJ, Sun Y (2009) Refolding and purification of histidine-tagged protein by artificial chaperone-assisted metal affinity chromatography. J Chromatogr A 1216:5207–5213

    Article  CAS  PubMed  Google Scholar 

  86. Manjasetty BA, Turnbull AP, Panjikar S, Bussow K, Chance MR (2008) Auto-mated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics 8:612–625

    Article  CAS  PubMed  Google Scholar 

  87. Sharma SK, Evans DB, Vosters AF, McQuade TJ, Tarpley WG (1991) Metal affinity chromatography of recombinant HIV-1 reverse transcriptase containing a human renin cleavable metal binding domain. Biotechnol Appl Biochem 14:69–81

    CAS  PubMed  Google Scholar 

  88. Zhang Z, Tong KT, Belew M, Pettersson T, Janson JC (1992) Production, purification and characterization of recombinant human interferon gamma. J Chromatogr 604:143–155

    Article  CAS  PubMed  Google Scholar 

  89. Franke CA, Hruby DE (1993) Expression and single-step purification of enzymatically active vaccinia virus thymidine kinase containing an engineered oligohistidine domain by immobilized metal affinity chromatography. Protein Expr Purif 4:101–109

    Article  CAS  PubMed  Google Scholar 

  90. Kipriyanov SM, Dubel S, Breitling F, Kontermann RE, Heymann S, Little M (1995) Bacterial expression and refolding of single-chain Fv fragments with C-terminal cysteines. Cell Biophys 26:187–204

    Article  CAS  PubMed  Google Scholar 

  91. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314

    Article  CAS  PubMed  Google Scholar 

  92. Eldin P, Pauza ME, Hieda Y, Lin G, Murtaugh MP, Pentel PR, Pennell CA (1997) High-level secretion of two antibody single chain Fv fragments by Pichia pastoris. J Immunol Methods 201:67–75

    Article  CAS  PubMed  Google Scholar 

  93. Passafiume M, Vulliez-le Normand B, Riottot MM, Bentley GA (1998) Sequence analysis of a monoclonal antibody specific for the preS2 region of hepatitis B surface antigen, and the cloning, expression and characterisation of its single-chain Fv construction. FEBS Lett 441:407–412

    Article  CAS  PubMed  Google Scholar 

  94. Kimple ME, Sondek J (2004) Overview of affinity tags for protein purification. Curr Protoc Protein Sci Chapter 9, Unit 9.9

    Google Scholar 

  95. Kwon K, Grose C, Pieper R, Pandya GA, Fleischmann RD, Peterson SN (2009) High quality protein microarray using in situ protein purification. BMC Biotechnol 9:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Steen J, Uhlen M, Hober S, Ottosson J (2006) High-throughput protein purification using an automated set-up for high-yield affinity chromatography. Protein Expr Purif 46:173–178

    Article  CAS  PubMed  Google Scholar 

  97. Hang Q, Woods L, Feiss M, Catalano CE (1999) Cloning, expression, and biochemical characterization of hexahistidine-tagged terminase proteins. J Biol Chem 274:15305–15314

    Article  CAS  PubMed  Google Scholar 

  98. Gaberc-Porekar V, Menart V, Jevsevar S, Vidensek A, Stalc A (1999) Histidines in affinity tags and surface clusters for immobilized metal-ion affinity chromatography of trimeric tumor necrosis factor alpha. J Chromatogr A 852:117–128

    Article  CAS  PubMed  Google Scholar 

  99. Chant A, Kraemer-Pecore CM, Watkin R, Kneale GG (2005) Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr Purif 39:152–159

    Article  CAS  PubMed  Google Scholar 

  100. Chaga G, Bochkariov DE, Jokhadze GG, Hopp J, Nelson P (1999) Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt(II)-carboxymethylaspartate crosslinked agarose. J Chromatogr A 864:247–256

    Article  CAS  PubMed  Google Scholar 

  101. de Vries EG, de Hooge MN, Gietema JA, de Jong S (2003) Correspondence Re: C. G. Ferreira et al., apoptosis: target of cancer therapy. Clin. Cancer Res., 8: 2024–2034, 2002. Clin Cancer Res 9:912, author reply 913

    PubMed  Google Scholar 

  102. Xu CG, Fan XJ, Fu YJ, Liang AH (2008) Effect of location of the His-tag on the production of soluble and functional Buthus martensii karsch insect toxin. Protein Expr Purif 59:103–109

    Article  CAS  PubMed  Google Scholar 

  103. Loughran ST, Loughran NB, Ryan BJ, D’Souza BN, Walls D (2006) Modified His-tag fusion vector for enhanced protein purification by immobilized metal affinity chromatography. Anal Biochem 355:148–150

    Article  CAS  PubMed  Google Scholar 

  104. Grisshammer R, White JF, Trinh LB, Shiloach J (2005) Large-scale expression and purification of a G-protein-coupled receptor for structure determination—an overview. J Struct Funct Genomics 6:159–163

    Article  CAS  PubMed  Google Scholar 

  105. Yeliseev AA, Wong KK, Soubias O, Gawrisch K (2005) Expression of human peripheral cannabinoid receptor for structural studies. Protein Sci 14:2638–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Magnusdottir A, Johansson I, Dahlgren LG, Nordlund P, Berglund H (2009) Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat Methods 6:477–478

    Article  CAS  PubMed  Google Scholar 

  107. Liu Z, Bartlow P, Varakala R, Beitle R, Koepsel R, Ataai MM (2009) Use of proteomics for design of a tailored host cell for highly efficient protein purification. J Chromatogr A 1216:2433–2438

    Article  CAS  PubMed  Google Scholar 

  108. Zhao Q, Chan YW, Lee SS, Cheung WT (2009) One-step expression and purification of single-chain variable antibody fragment using an improved hexahistidine tag phagemid vector. Protein Expr Purif 68:190–195

    Article  CAS  PubMed  Google Scholar 

  109. Ye K, Jin S, Ataai MM, Schultz JS, Ibeh J (2004) Tagging retrovirus vectors with a metal binding peptide and one-step purification by immobilized metal affinity chromatography. J Virol 78:9820–9827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheeks MC, Kamal N, Sorrell A, Darling D, Farzaneh F, Slater NK (2009) Immobilized metal affinity chromatography of histidine-tagged lentiviral vectors using monolithic adsorbents. J Chromatogr A 1216:2705–2711

    Article  CAS  PubMed  Google Scholar 

  111. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    Article  CAS  PubMed  Google Scholar 

  112. Ayala JC, Pimienta E, Rodriguez C, Anne J, Vallin C, Milanes MT, King-Batsios E, Huygen K, Van Mellaert L (2013) Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. J Microbiol Methods 94:192–198

    Article  CAS  PubMed  Google Scholar 

  113. Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 23:440–446

    Article  CAS  PubMed  Google Scholar 

  114. Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14:1538–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stofko-Hahn RE, Carr DW, Scott JD (1992) A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP 2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Lett 302:274–278

    Article  CAS  PubMed  Google Scholar 

  116. Carrard G, Koivula A, Soderlund H, Beguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci U S A 97:10342–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nahalka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  CAS  PubMed  Google Scholar 

  119. Xu Y, Foong FC (2008) Characterization of a cellulose binding domain from Clostridium cellulovorans endoglucanase-xylanase D and its use as a fusion partner for soluble protein expression in Escherichia coli. J Biotechnol 135:319–325

    Article  CAS  PubMed  Google Scholar 

  120. Craig SJ, Shu A, Xu Y, Foong FC, Nordon R (2007) Chimeric protein for selective cell attachment onto cellulosic substrates. Protein Eng Des Sel 20:235–241

    Article  CAS  PubMed  Google Scholar 

  121. Xu MQ, Paulus H, Chong S (2000) Fusions to self-splicing inteins for protein purification. Methods Enzymol 326:376–418

    Article  CAS  PubMed  Google Scholar 

  122. Fong BA, Wood DW (2010) Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation. Microb Cell Fact 9:77. doi:10.1186/1475-2859-9-77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wang Z, Li N, Wang Y, Wu Y, Mu T, Zheng Y, Huang L, Fang X (2012) Ubiquitin-intein and SUMO2-intein fusion systems for enhanced protein production and purification. Protein Expr Purif 82(1):174–178

    Article  CAS  PubMed  Google Scholar 

  124. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    Article  CAS  PubMed  Google Scholar 

  125. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45:593–615

    CAS  PubMed  Google Scholar 

  126. Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 Kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    Article  CAS  PubMed  Google Scholar 

  127. Thompson NE, Arthur TM, Burgess RR (2003) Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: application to epitope-tagged green fluorescent protein. Anal Biochem 323:171–179

    Article  CAS  PubMed  Google Scholar 

  128. Kim JS, Raines RT (1993) Ribonuclease S-peptide as a carrier in fusion proteins. Protein Sci 2:348–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Banki MR, Feng L, Wood DW (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods 2:659–661

    Article  CAS  PubMed  Google Scholar 

  130. Hassouneh W, MacEwan S, Chilkoti A (2012) Fusions of elastin-like polypeptides to pharmaceutical proteins. Methods Enzymol 502:215–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lim DW, Trabbic-Carlson K, Mackay JA, Chilkoti A (2007) Improved non-chromatographic purification of a recombinant protein by cationic elastin-like polypeptides. Biomacromolecules 8:1417–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. MacEwan SR, Hassouneh W, Chilkoti A (2014) Non-chromatographic purification of recombinant elastin-like polypeptides and their fusions with peptides and proteins from Escherichia coli. J Vis Exp (88)

    Google Scholar 

  133. Wu WY, Mee C, Califano F, Banki R, Wood DW (2006) Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc 1:2257–2262

    Article  CAS  PubMed  Google Scholar 

  134. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  135. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  CAS  PubMed  Google Scholar 

  136. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  137. Forler D, Kocher T, Rode M, Gentzel M, Izaurralde E, Wilm M (2003) An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol 21:89–92

    Article  CAS  PubMed  Google Scholar 

  138. Gingras AC, Aebersold R, Raught B (2005) Advances in protein complex analysis using mass spectrometry. J Physiol 563:11–21

    Article  CAS  PubMed  Google Scholar 

  139. Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13

    Article  CAS  PubMed  Google Scholar 

  140. Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar SP, Deng XW (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41:767–778

    Article  CAS  PubMed  Google Scholar 

  141. Van Leene J, Stals H, Eeckhout D, Persiau G, Van De Slijke E, Van Isterdael G, De Clercq A, Bonnet E, Laukens K, Remmerie N, Henderickx K, De Vijlder T, Abdelkrim A, Pharazyn A, Van Onckelen H, Inze D, Witters E, De Jaeger G (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6:1226–1238

    Article  PubMed  CAS  Google Scholar 

  142. Lehmann R, Meyer J, Schuemann M, Krause E, Freund C (2009) A novel S3S-TAP-tag for the isolation of T cell interaction partners of adhesion and degranulation promoting adaptor protein (ADAP). Proteomics 9(23):5288–5295

    Article  CAS  PubMed  Google Scholar 

  143. Gloeckner CJ, Boldt K, Schumacher A, Ueffing M (2009) Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag. Methods Mol Biol 564:359–372

    Article  CAS  PubMed  Google Scholar 

  144. Tsai A, Carstens RP (2006) An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc 1:2820–2827

    Article  CAS  PubMed  Google Scholar 

  145. Van Leene J, Witters E, Inze D, De Jaeger G (2008) Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci 13:517–520

    Article  PubMed  CAS  Google Scholar 

  146. Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019

    Article  PubMed  CAS  Google Scholar 

  147. Schimanski B, Nguyen TN, Gunzl A (2005) Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell 4:1942–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Stamsås G, Håvarstein L, Straume D (2013) CHiC, a new tandem affinity tag for the protein purification toolbox. J Microbiol Methods 92:59–63

    Article  PubMed  CAS  Google Scholar 

  149. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810

    Article  CAS  PubMed  Google Scholar 

  150. Charlton A, Zachariou M (2011) Tag removal by site-specific cleavage of recombinant fusion proteins. Methods Mol Biol 681:349–367

    Article  CAS  PubMed  Google Scholar 

  151. Waugh D (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li Y (2011) Self-cleaving fusion tags for recombinant protein production. Biotechnol Lett 33(5):869–881

    Article  CAS  PubMed  Google Scholar 

  153. Wang BC, Adams MW, Dailey H, DeLucas L, Luo M, Rose J, Bunzel R, Dailey T, Habel J, Horanyi P, Jenney FE Jr, Kataeva I, Lee HS, Li S, Li T, Lin D, Liu ZJ, Luan CH, Mayer M, Nagy L, Newton MG, Ng J, Poole FL II, Shah A, Shah C, Sugar FJ, Xu H (2005) Protein production and crystallization at SECSG—an overview. J Struct Funct Genomics 6:233–243

    Article  CAS  PubMed  Google Scholar 

  154. Bucher MH, Evdokimov AG, Waugh DS (2002) Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta Crystallogr D Biol Crystallogr 58:392–397

    Article  PubMed  CAS  Google Scholar 

  155. Lee JE, Fusco ML, Ollmann Saphire E (2009) An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nat Protoc 4:592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schlaeppi JM, Henke M, Mahnke M, Hartmann S, Schmitz R, Pouliquen Y, Kerins B, Weber E, Kolbinger F, Kocher HP (2006) A semi-automated large-scale process for the production of recombinant tagged proteins in the baculovirus expression system. Protein Expr Purif 50:185–195

    Article  CAS  PubMed  Google Scholar 

  157. Donnelly MI, Zhou M, Millard CS, Clancy S, Stols L, Eschenfeldt WH, Collart FR, Joachimiak A (2006) An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr Purif 47:446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vinarov DA, Lytle BL, Peterson FC, Tyler EM, Volkman BF, Markley JL (2004) Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nat Methods 1:149–153

    Article  CAS  PubMed  Google Scholar 

  159. Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17:373–380

    Article  CAS  PubMed  Google Scholar 

  160. Sawasaki T, Ogasawara T, Morishita R, Endo Y (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 99:14652–14657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liguori L, Marques B, Villegas-Mendez A, Rothe R, Lenormand JL (2007) Production of membrane proteins using cell-free expression systems. Expert Rev Proteomics 4:79–90

    Article  CAS  PubMed  Google Scholar 

  162. Periasamy A, Shadiac N, Amalraj A, Garajova S, Nagarajan Y, Waters S, Mertens HD, Hrmova M (2013) Cell-free protein synthesis of membrane (1,3)-beta-D-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim Biophys Acta 1828:743–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the Health Research Board (HRB grant RP/2005/212) and Enterprise Ireland (EI grant IP 2008-0530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Walls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Loughran, S.T., Walls, D. (2017). Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 1485. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6412-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6412-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6410-9

  • Online ISBN: 978-1-4939-6412-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics