Skip to main content

Differential Precipitation and Solubilization of Proteins

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1485))

Abstract

Differential protein precipitation is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of the polypeptide. Precipitation of recombinant proteins, lysed from the host cell, is commonly used to concentrate the protein of choice before further polishing steps with more selective purification columns (e.g., His-Tag, Size Exclusion, etc.). Recombinant proteins can also precipitate naturally as inclusion bodies due to various influences during overexpression in the host cell. Although this phenomenon permits easier initial separation from native proteins, these inclusion bodies must carefully be differentially solubilized so as to reform functional, correctly folded proteins. Here, appropriate bioinformatics tools to aid in understanding a protein’s propensity to aggregate and solubilize are explored as a backdrop for a typical protein extraction, precipitation, and selective resolubilization procedure, based on a recombinantly expressed protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Fágáin C (1997) Protein stability and its measurement. In: O’Fágáin C (ed) Stabilising protein function. Springer Press, Berlin, pp 69–75

    Google Scholar 

  2. Ramos Y, García Y, Llopiz A, Castellanos-Serra L (2008) Selectivity of bacterial proteome fractionation based on differential solubility: a mass spectrometry evaluation. Anal Biochem 377:134–140

    Article  CAS  PubMed  Google Scholar 

  3. Leimgruber RM (2005) Extraction and solubilisation of proteins for proteomic studies. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, NJ, pp 1–18

    Chapter  Google Scholar 

  4. Habibi N, Hashim SZM, Norouzi A, Samian MR (2014) A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli. BMC Bioinformatics 15:134

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smialowski P, Doose G, Torkler P, Kaufmann S, Frishman D (2012) PROSO II–a new method for protein solubility prediction. FEBS J 279:2192–2200

    Article  CAS  PubMed  Google Scholar 

  6. Hirose S, Noguchi T (2013) ESPRESSO: a system for estimating protein expression and solubility in protein expression systems. Proteomics 13:1444–1456

    Article  CAS  PubMed  Google Scholar 

  7. Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7:285

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hays FA, Roe-Zurz Z, Stroud RM (2010) Overexpression and purification of integral membrane proteins in yeast. Methods Enzymol 470:695–707

    Article  CAS  PubMed  Google Scholar 

  9. Zheng H, Miyakawa T, Sawano Y, Yamagoe S, Tanokura M (2013) Expression, high-pressure refolding and purification of human leukocyte cell-derived chemotaxin 2 (LECT2). Protein Expr Purif 88:221–229

    Article  CAS  PubMed  Google Scholar 

  10. Dworeck T, Petri AK, Muhammad N, Fioroni M, Schwaneberg U (2011) FhuA deletion variant Δ1-159 overexpression in inclusion bodies and refolding with Polyethylene-Poly (ethylene glycol) diblock copolymer. Protein Expr Purif 77:75–79

    Article  CAS  PubMed  Google Scholar 

  11. Rane AM, Jonnalagadda S, Li Z (2013) On-column refolding of bone morphogenetic protein-2 using cation exchange resin. Protein Expr Purif 90:135–140

    Article  CAS  PubMed  Google Scholar 

  12. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4:235–251

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pace CN, Grimsley GR, Scholtz JM (2009) Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem 284:13285–13289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trevino SR, Scholtz JM, Pace CN (2008) Measuring and increasing protein solubility. J Pharm Sci 97:4155–4166

    Article  CAS  PubMed  Google Scholar 

  15. Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12:151

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jonasson P, Liljeqvist S, Nygren PA, Ståhl S (2002) Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 35:91–105

    Article  CAS  PubMed  Google Scholar 

  17. Chen ZY, Cao J, Xie L, Li XF, Yu ZH, Tong WY (2014) Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli. J Microbial Biotechnol 7:360–370

    Article  CAS  Google Scholar 

  18. Yoon SH, Kim SK, Kim JF (2010) Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 4:23–29

    Article  CAS  PubMed  Google Scholar 

  19. Jonet MA, Mahadi NM, Murad AMA, Rabu A, Bakar FDA, Rahim RA, Illias RM (2012) Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. J Mol Microbiol Biotechnol 22:48–58

    Article  CAS  PubMed  Google Scholar 

  20. Fu XY (2010) Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium. Appl Microbiol Biotechnol 88:75–86

    Article  CAS  PubMed  Google Scholar 

  21. Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, Van Voorhis WC (2012) Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS One 7:e52482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. French C, Keshavarz-Moore E, Ward JM (1996) Development of a simple method for the recovery of recombinant proteins from the E. coli periplasm. Enzyme Microb Technol 19:332–338

    Article  CAS  Google Scholar 

  23. Caldwell RB, Lattemann CT (2004) Simple and reliable method to precipitate proteins from bacterial culture supernatant. Appl Environ Microbiol 70:610–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Islam MN, Zhang M, Adhikari B (2014) The inactivation of enzymes by ultrasound: a review of potential mechanisms. Food Rev Int 30:1–21

    Article  CAS  Google Scholar 

  25. Özbek B, Ülgen KÖ (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043

    Article  Google Scholar 

  26. Feliu JX, Cubarsi R, Villaverde A (1998) Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnol Bioeng 58:536–540

    Article  CAS  PubMed  Google Scholar 

  27. Doonan S (2004) Bulk purification by fractional precipitation. In: Cutler P (ed) Protein purification protocols, vol 244, Methods in molecular biology. Humana, Totowa, NJ, pp 117–125

    Chapter  Google Scholar 

  28. Balasundaram B, Sachdeva S, Bracewell DG (2011) Dual salt precipitation for the recovery of a recombinant protein from Escherichia coli. Biotechnol Prog 27:1306–1314

    Article  CAS  PubMed  Google Scholar 

  29. Burgess RR (2009) Protein precipitation techniques. Methods Enzymol 463:331–342

    Article  CAS  PubMed  Google Scholar 

  30. Hekmat D, Maslak D, von Roman MF, Breitschwerdt P, Ströhle C, Vogt A, Berensmeier S, Weuster-Botz D (2015) Non-chromatographic preparative purification of enhanced green fluorescent protein. J Biotechnol 194:84–90

    Article  CAS  PubMed  Google Scholar 

  31. Hekmat D, Breitschwerdt P, Weuster-Botz D (2015) Purification of proteins from solutions containing residual host cell proteins via preparative crystallization. Biotechnol Lett 37:1791–1801

    Article  CAS  PubMed  Google Scholar 

  32. Rothstein F (1994) Differential precipitation of proteins. In: Harrison RG (ed) Protein purification process engineering. Marcel Dekker, New York, pp 115–116

    Google Scholar 

  33. Lindwall G, Chau M-F, Gardner SR, Kohlstaedt LA (2000) A sparse matrix approach to the solubilisation of overexpressed proteins. Protein Eng 13:67–71

    Article  CAS  PubMed  Google Scholar 

  34. Luche S, Santoni V, Rabilloud T (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3:249–253

    Article  CAS  PubMed  Google Scholar 

  35. Cabrita LD, Bottomley SP (2004) Protein expression and refolding–a practical guide to getting the most out of inclusion bodies. Biotechnol Annu Rev 10:31–50

    Article  CAS  PubMed  Google Scholar 

  36. Basu A, Li X, Leong SSJ (2011) Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 92:241–251

    Article  CAS  PubMed  Google Scholar 

  37. Phan J, Yamout N, Schmidberger J, Bottomley SP, Buckle AM (2011) Refolding your protein with a little help from REFOLD. Methods Mol Biol 752:45–57

    Article  CAS  PubMed  Google Scholar 

  38. Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8

    Article  CAS  PubMed  Google Scholar 

  39. Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56

    CAS  PubMed  Google Scholar 

  40. Jungbauer A, Kaar W (2007) Current status of technical protein refolding. J Biotechnol 128:587–596

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ryan, B.J., Kinsella, G.K. (2017). Differential Precipitation and Solubilization of Proteins. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 1485. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6412-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6412-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6410-9

  • Online ISBN: 978-1-4939-6412-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics