Skip to main content

Assessing Predicted Contacts for Building Protein Three-Dimensional Models

  • Protocol
  • First Online:
Book cover Prediction of Protein Secondary Structure

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1484))

  • 2662 Accesses

Abstract

Recent successes of contact-guided protein structure prediction methods have revived interest in solving the long-standing problem of ab initio protein structure prediction. With homology modeling failing for many protein sequences that do not have templates, contact-guided structure prediction has shown promise, and consequently, contact prediction has gained a lot of interest recently. Although a few dozen contact prediction tools are already currently available as web servers and downloadables, not enough research has been done towards using existing measures like precision and recall to evaluate these contacts with the goal of building three-dimensional models. Moreover, when we do not have a native structure for a set of predicted contacts, the only analysis we can perform is a simple contact map visualization of the predicted contacts. A wider and more rigorous assessment of the predicted contacts is needed, in order to build tertiary structure models. This chapter discusses instructions and protocols for using tools and applying techniques in order to assess predicted contacts for building three-dimensional models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikari B, Bhattacharya D, Cao R, Cheng J (2015) CONFOLD: residue‐residue contact‐guided ab initio protein folding. Proteins 83(8):1436–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kosciolek T, Jones DT (2014) De novo structure prediction of globular proteins aided by sequence variation-derived contacts. PLoS One 9(3):e92197

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6(12):e28766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhattacharya D, Cheng J (2015) De novo protein conformational sampling using a probabilistic graphical model. Sci Rep 5:16332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. doi:10.1016/b978-0-12-381270-4.00019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mabrouk M, Putz I, Werner T, Schneider M, Neeb M, Bartels P, Brock O (2015) RBO Aleph: leveraging novel information sources for protein structure prediction. Nucleic Acids Res 43(W1):W343–W348. doi:10.1093/nar/gkv357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Zhang L, Jing L, Wang Y, Jiang Z, Zhao D (2003) Predicting protein structure from long-range contacts. Biophys Chem 105(1):11–21

    Article  CAS  PubMed  Google Scholar 

  9. Gromiha MM, Selvaraj S (1999) Importance of long-range interactions in protein folding. Biophys Chem 77(1):49–68

    Article  CAS  PubMed  Google Scholar 

  10. Monastyrskyy B, Fidelis K, Tramontano A, Kryshtafovych A (2011) Evaluation of residue–residue contact predictions in CASP9. Proteins 79(S10):119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monastyrskyy B, D’Andrea D, Fidelis K, Tramontano A, Kryshtafovych A (2014) Evaluation of residue–residue contact prediction in CASP10. Proteins 82(S2):138–153

    Article  CAS  PubMed  Google Scholar 

  12. Ezkurdia I, Grana O, Izarzugaza JM, Tress ML (2009) Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8. Proteins 77(S9):196–209

    Article  CAS  PubMed  Google Scholar 

  13. Vehlow C, Stehr H, Winkelmann M, Duarte JM, Petzold L, Dinse J, Lappe M (2011) CMView: interactive contact map visualization and analysis. Bioinformatics 27(11):1573–1574

    Article  CAS  PubMed  Google Scholar 

  14. Eickholt J, Cheng J (2012) Predicting protein residue–residue contacts using deep networks and boosting. Bioinformatics 28(23):3066–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2(11):2728–2733

    Article  CAS  PubMed  Google Scholar 

  16. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges M, Pannu NS (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(5):905–921

    Article  CAS  PubMed  Google Scholar 

  17. Jones DT, Buchan DW, Cozzetto D, Pontil M (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28(2):184–190

    Article  CAS  PubMed  Google Scholar 

  18. Eswar N, Webb B, Marti‐Renom MA, Madhusudhan M, Eramian D, Shen M, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 5.6.1:5.6.32

    Google Scholar 

  19. Vassura M, Margara L, Di Lena P, Medri F, Fariselli P, Casadio R (2008) FT-COMAR: fault tolerant three-dimensional structure reconstruction from protein contact maps. Bioinformatics 24(10):1313–1315

    Article  CAS  PubMed  Google Scholar 

  20. Di Lena P, Vassura M, Margara L, Fariselli P, Casadio R (2009) On the reconstruction of three-dimensional protein structures from contact maps. Algorithms 2(1):76–92

    Article  Google Scholar 

  21. Duarte JM, Sathyapriya R, Stehr H, Filippis I, Lappe M (2010) Optimal contact definition for reconstruction of contact maps. BMC Bioinformatics 11(1):283

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sathyapriya R, Duarte JM, Stehr H, Filippis I, Lappe M (2009) Defining an essence of structure determining residue contacts in proteins. PLoS Comput Biol 5(12):e1000584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tegge AN, Wang Z, Eickholt J, Cheng J (2009) NNcon: improved protein contact map prediction using 2D-recursive neural networks. Nucleic Acids Res 37(suppl 2):W515–W518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng J, Baldi P (2007) Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 8(1):113

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seemayer S, Gruber M, Söding J (2014) CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations. Bioinformatics 30(21):3128–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schneider M, Brock O (2014) Combining physicochemical and evolutionary information for protein contact prediction. PLoS One 9(10), 10.1371/journal.pone.0108438

    Google Scholar 

  27. Kaján L, Hopf TA, Marks DS, Rost B (2014) FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinformatics 15(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jones DT, Singh T, Kosciolek T, Tetchner S (2014) MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics. btu791

    Google Scholar 

  29. Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved contact predictions using the recognition of protein like contact patterns. PLoS Comput Biol 10(11):e1003889

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33(suppl 2):W72–W76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    Article  CAS  PubMed  Google Scholar 

  32. Skwark MJ, Abdel-Rehim A, Elofsson A (2013) PconsC: combination of direct information methods and alignments improves contact prediction. Bioinformatics 29(14):1815–1816. doi:10.1093/bioinformatics/btt259

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Adhikari, B., Bhattacharya, D., Cao, R., Cheng, J. (2017). Assessing Predicted Contacts for Building Protein Three-Dimensional Models. In: Zhou, Y., Kloczkowski, A., Faraggi, E., Yang, Y. (eds) Prediction of Protein Secondary Structure. Methods in Molecular Biology, vol 1484. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6406-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6406-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6404-8

  • Online ISBN: 978-1-4939-6406-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics