Skip to main content

The GOR Method of Protein Secondary Structure Prediction and Its Application as a Protein Aggregation Prediction Tool

  • Protocol
  • First Online:
Prediction of Protein Secondary Structure

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1484))

Abstract

The GOR method of protein secondary structure prediction is described. The original method was published by Garnier, Osguthorpe, and Robson in 1978 and was one of the first successful methods to predict protein secondary structure from amino acid sequence. The method is based on information theory, and an assumption that information function of a protein chain can be approximated by a sum of information from single residues and pairs of residues. The analysis of frequencies of occurrence of secondary structure for singlets and doublets of residues in a protein database enables prediction of secondary structure for new amino acid sequences. Because of these simple physical assumptions the GOR method has a conceptual advantage over other later developed methods such as PHD, PSIPRED, and others that are based on Machine Learning methods (like Neural Networks), give slightly better predictions, but have a “black box” nature. The GOR method has been continuously improved and modified for 30 years with the last GOR V version published in 2002, and the GOR V server developed in 2005. We discuss here the original GOR method and the GOR V program and the web server. Additionally we discuss new highly interesting and important applications of the GOR method to chameleon sequences in protein folding simulations, and for prediction of protein aggregation propensities. Our preliminary studies show that the GOR method is a promising and efficient alternative to other protein aggregation predicting tools. This shows that the GOR method despite being almost 40 years old is still important and has significant potential in application to new scientific problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  2. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  CAS  PubMed  Google Scholar 

  3. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Article  CAS  PubMed  Google Scholar 

  4. Creighton TE (1990) Prediction of protein structure and the principles of protein conformation. Gerald D. Fasman, Ed. Plenum, New York, 1989. xiv, 798 pp., illus. $95, Science 247:1351–1352

    Google Scholar 

  5. Gibrat JF, Garnier J, Robson B (1987) Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs. J Mol Biol 198:425–443

    Article  CAS  PubMed  Google Scholar 

  6. Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Meth Enzymol 266:540–553

    Article  CAS  PubMed  Google Scholar 

  7. Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002) Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins 49:154–166

    Article  CAS  PubMed  Google Scholar 

  8. Rost B, Sander C, Schneider R (1994) Phd—an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10:53–60

    CAS  PubMed  Google Scholar 

  9. Faraggi E, Zhang T, Yang YD, Kurgan L, Zhou YQ (2012) SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 33:259–267

    Article  CAS  PubMed  Google Scholar 

  10. Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34:508–519

    Article  CAS  PubMed  Google Scholar 

  11. Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511

    Article  CAS  PubMed  Google Scholar 

  12. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frishman D, Argos P (1997) Seventy-five percent accuracy in protein secondary structure prediction. Proteins 27:329–335

    Article  CAS  PubMed  Google Scholar 

  14. Sen TZ, Jernigan RL, Garnier J, Kloczkowski A (2005) GOR V server for protein secondary structure prediction. Bioinformatics 21:2787–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41:W406–W411

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang JY, Yan RX, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43:W419–W424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blaszczyk M, Kurcinski M, Kouza M, Wieteska L, Debinski A, Kolinski A, Kmiecik S (2016) Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods 93:72–83

    Article  CAS  PubMed  Google Scholar 

  19. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  20. Alexander PA, He YA, Chen YH, Orban J, Bryan PN (2009) A minimal sequence code for switching protein structure and function. Proc Natl Acad Sci U S A 106:21149–21154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alexander PA, He Y, Chen Y, Orban J, Bryan PN (2007) The design and characterization of two proteins with 88 % sequence identity but different structure and function. Proc Natl Acad Sci U S A 104:11963–11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bryan PN, Orban J (2010) Proteins that switch folds. Curr Opin Struct Biol 20:482–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kouza M, Hansmann UHE (2012) Folding simulations of the A and B domains of protein G. J Phys Chem B 116:6645–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohanty S, Meinke JH, Zimmermann O, Hansmann UHE (2008) Simulation of Top7-CFr: a transient helix extension guides folding. Proc Natl Acad Sci U S A 105:8004–8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaye ML, Hardwick C, Kouza M, Hansmann UHE (2012) Chameleonicity and folding of the C-fragment of TOP7. Epl-Europhys Lett 97:68003

    Article  Google Scholar 

  26. Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009) An all-atom structure-based potential for proteins: Bridging minimal models with all-atom empirical forcefields. Proteins 75:430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953

    Article  CAS  PubMed  Google Scholar 

  28. Kolinski A (2004) Protein modeling and structure prediction with a reduced representation. Acta Biochim Pol 51:349–371

    CAS  PubMed  Google Scholar 

  29. Wabik J, Kmiecik S, Gront D, Kouza M, Kolinski A (2013) Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics. Int J Mol Sci 14:9893–9905

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  31. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Cote S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu YG, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang CY, Derreumaux P (2015) Amyloid beta protein and Alzheimer’s disease: when computer simulations complement experimental studies. Chem Rev 115:3518–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF, Bernstein IM, Glabe CG, Buhimschi CS (2014) Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med 6:245ra292

    Article  Google Scholar 

  33. Berhanu WM, Hansmann UHE (2012) Side-chain hydrophobicity and the stability of A beta(16-22) aggregates. Protein Sci 21:1837–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otzen DE, Kristensen O, Oliveberg M (2000) Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly. Proc Natl Acad Sci U S A 97:9907–9912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D (2007) Monomer adds to preformed structured oligomers of A beta-peptides by a two-stage dock-lock mechanism. Proc Natl Acad Sci U S A 104:111–116

    Article  CAS  PubMed  Google Scholar 

  36. Kouza M, Co NT, Nguyen PH, Kolinski A, Li MS (2015) Preformed template fluctuations promote fibril formation: insights from lattice and all-atom models. J Chem Phys 142:145104

    Article  PubMed  Google Scholar 

  37. Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM (2002) Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci U S A 99:16419–16426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. West MW, Wang WX, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A 96:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem 276:12945–12950

    Article  CAS  PubMed  Google Scholar 

  40. Sgourakis NG, Yan YL, McCallum SA, Wang CY, Garcia AE (2007) The Alzheimer’s peptides A beta 40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J Mol Biol 368:1448–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    Article  CAS  PubMed  Google Scholar 

  42. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808

    Article  CAS  PubMed  Google Scholar 

  43. Nam HB, Kouza M, Hoang Z, Li MS (2010) Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: insights from all-atom simulations. J Chem Phys 132:165104

    Article  PubMed  Google Scholar 

  44. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  CAS  PubMed  Google Scholar 

  45. Castillo V, Grana-Montes R, Sabate R, Ventura S (2011) Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol J 6:674–685

    Article  CAS  PubMed  Google Scholar 

  46. Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332

    Article  CAS  PubMed  Google Scholar 

  47. Tartaglia GG, Vendruscolo M (2008) The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 37:1395–1401

    Article  CAS  PubMed  Google Scholar 

  48. Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43:W306–W313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  CAS  PubMed  Google Scholar 

  50. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, DiIorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  51. Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17:48–57

    Article  CAS  PubMed  Google Scholar 

  52. Floege J, Ketteler M (2001) beta(2)-microglobulin-derived amyloidosis: an update. Kidney Int 59:S164–S171

    Article  Google Scholar 

Download references

Acknowledgments

A. Kloczkowski would like to acknowledge support provided by start-up funds from The Research Institute of Nationwide Children’s Hospital. This work was also supported by the Polish Ministry of Science and Higher Education Grant No. IP2012 016872 and “Mobilnosc Plus” No. DN/MOB/069/IV/2015; the National Science Center grant [MAESTRO 2014/14/A/ST6/00088].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kloczkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kouza, M., Faraggi, E., Kolinski, A., Kloczkowski, A. (2017). The GOR Method of Protein Secondary Structure Prediction and Its Application as a Protein Aggregation Prediction Tool. In: Zhou, Y., Kloczkowski, A., Faraggi, E., Yang, Y. (eds) Prediction of Protein Secondary Structure. Methods in Molecular Biology, vol 1484. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6406-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6406-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6404-8

  • Online ISBN: 978-1-4939-6406-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics