Skip to main content

Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein–Protein Complexes

  • Protocol
  • First Online:
Prediction of Protein Secondary Structure

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1484))

Abstract

Studying protein–protein interactions leads to a better understanding of the underlying principles of several biological pathways. Cost and labor-intensive experimental techniques suggest the need for computational methods to complement them. Several such state-of-the-art methods have been reported for analyzing diverse aspects such as predicting binding partners, interface residues, and binding affinity for protein–protein complexes with reliable performance. However, there are specific drawbacks for different methods that indicate the need for their improvement. This review highlights various available computational algorithms for analyzing diverse aspects of protein–protein interactions and endorses the necessity for developing new robust methods for gaining deep insights about protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nooren IM, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22:3486–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sudha G, Nussinov R, Srinivasan N (2014) An overview of recent advances in structural bioinformatics of protein-protein interactions and a guide to their principles. Prog Biophys Mol Biol 116:141–150

    Article  CAS  PubMed  Google Scholar 

  3. Gromiha MM (2010) Protein bioinformatics: from sequence to function. Elsevier, New Delhi

    Google Scholar 

  4. Bahadur RP, Chakrabarti P, Rodier F, Janin J (2004) A dissection of specific and non-specific protein–protein interfaces. J Mol Biol 336:943–955

    Article  CAS  PubMed  Google Scholar 

  5. Gromiha MM, Yokota K, Fukui K (2009) Energy based approach for understanding the recognition mechanism in protein–protein complexes. Mol Biosyst 5:1779–1786

    Article  PubMed  CAS  Google Scholar 

  6. Jones S, Thornton JM (1997) Prediction of protein–protein interaction sites using patch analysis. J Mol Biol 272:133–143

    Article  CAS  PubMed  Google Scholar 

  7. Neuvirth H, Raz R, Schreiber G (2004) ProMate: a structure based prediction program to identify the location of protein–protein binding sites. J Mol Biol 338:181–199

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez-Recio J, Totrov M, Abagyan R (2004) Identification of protein- protein interaction sites from docking energy landscapes. J Mol Biol 335:843–865

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez-Recio J, Totrov M, Skorodumov C, Abagyan R (2005) Optimal docking area: a new method for predicting protein–protein interaction sites. Proteins 58:134–143

    Article  CAS  PubMed  Google Scholar 

  10. La D, Kihara D (2012) A novel method for protein–protein interaction site prediction using phylogenetic substitution models. Proteins 80:126–141

    Article  CAS  PubMed  Google Scholar 

  11. La D, Kong M, Hoffman W, Choi YI, Kihara D (2013) Predicting permanent and transient protein-protein interfaces. Proteins 81:805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jordan RA, Yasser EM, Dobbs D, Honavar V (2012) Predicting protein-protein interface residues using local surface structural similarity. BMC Bioinformatics 13:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ofran Y, Rost B (2003) Predict protein-protein interaction sites from local sequence information. FEBS Lett 544:236–239

    Article  CAS  PubMed  Google Scholar 

  14. Ofran Y, Rost B (2007) ISIS: interaction sites identified from sequence. Bioinformatics 23:e13–e16

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad S, Mizuguchi K (2011) Partner-aware prediction of interacting residues in protein–protein complexes from sequence data. PLoS One 6:e29104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shoemaker BA, Panchenko AR (2007) Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners. Plos Comput Biol 3:595–601

    CAS  Google Scholar 

  17. Tuncbag N, Gursoy A, Keskin O (2011) Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces. Phys Biol 8:035006

    Article  PubMed  CAS  Google Scholar 

  18. Martin S, Roe D, Faulon JL (2005) Predicting protein–protein interactions using signature products. Bioinformatics 21:218–226

    Article  CAS  PubMed  Google Scholar 

  19. Pan XY, Zhang YN, Shen HB (2010) Large-scale prediction of human protein– protein interactions from amino acid sequence based on latent topic features. J Proteome Res 9:4992–5001

    Article  CAS  PubMed  Google Scholar 

  20. Zhang YN, Pan XY, Huang Y, Shen HB (2011) Adaptive compressive learning for prediction of protein–protein interactions from primary sequence. J Theor Biol 283:44–52

    Article  CAS  PubMed  Google Scholar 

  21. Ramos H, Shannon P, Brusniak MY, Kusebauch U, Moritz RL, Aebersold R (2001) The protein information and property explorer 2: gaggle-like exploration of biological proteomic data within one webpage. Proteomics 11:154–158

    Article  CAS  Google Scholar 

  22. Corney DP, Buxton BF, Langdon WB, Jones DT (2004) BioRAT: extracting biological information from full-length papers. Bioinformatics 20:3206–3213

    Article  CAS  PubMed  Google Scholar 

  23. Rzhetsky A, Iossifov I, Koike T, Krauthammer M, Kra P, Morris M, Yu H, Duboue PA, Weng W, Wilbur WJ, Hatzivassiloglou V, Friedman C (2004) GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J Biomed Inform 37:43–53

    Article  CAS  PubMed  Google Scholar 

  24. Tsuruoka Y, Miwa M, Hamamoto K, Tsujii JI, Ananiadou S (2011) Discovering and visualizing indirect associations between biomedical concepts. Bioinformatics 27:i111–i119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elefsinioti A, Saraç ÖS, Hegele A, Plake C, Hubner NC, Poser I, Sarov M, Hyman A, Mann M, Schroeder M, Stelzl U, Beyer A (2011) Large-scale de novo prediction of physical protein-protein association. Mol Cell Proteomics 10:M111–M010629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tudor CO, Arighi CN, Wang Q, Wu CH, Vijay-Shanker K (2012) The eFIP system for text mining of protein interaction networks of phosphorylated proteins. Database bas044

    Google Scholar 

  27. Yang Z, Zhao Z, Li Y, Hu Y, Lin H (2013) PPIExtractor: a protein interaction extraction and visualization system for biomedical literature. IEEE Trans Nanobiosci 12:173–181

    Article  Google Scholar 

  28. Subramani S, Kalpana R, Monickaraj PM, Natarajan J (2015) HPIminer: a text mining system for building and visualizing human protein interaction networks and pathways. J Biomed Inform 54:121–131

    Article  PubMed  Google Scholar 

  29. Papanikolaou N, Pavlopoulos GA, Theodosiou T, Iliopoulos I (2015) Protein-protein interaction predictions using text mining methods. Methods 74:47–53

    Article  CAS  PubMed  Google Scholar 

  30. Skrabanek L, Saini H, Bader G, Enright A (2008) Computational prediction of protein–protein interactions. Mol Biotechnol 38:1–17

    Article  CAS  PubMed  Google Scholar 

  31. Tamames J, Casari G, Ouzounis C, Valencia A (1997) Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol 44:66–73

    Article  CAS  PubMed  Google Scholar 

  32. Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324–328

    Article  CAS  PubMed  Google Scholar 

  33. Overbeek R, Fonstein M, D’souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96:2896–2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5:R35

    Article  PubMed  PubMed Central  Google Scholar 

  35. Muley VY, Ranjan A (2012) Effect of reference genome selection on the performance of computational methods for genome-wide protein-protein interaction prediction. PLoS One 7:e42057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bock JR, Gough DA (2001) Predicting protein–protein interactions from primary structure. Bioinformatics 17:455–460

    Article  CAS  PubMed  Google Scholar 

  37. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H (2007) Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci U S A 104:4337–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo Y, Yu L, Wen Z, Li M (2008) Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences. Nucleic Acids Res 36:3025–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pitre S, North C, Alamgir M, Jessulat M, Chan A, Luo X, Green JR, Dumontier M, Dehne F, Golshani A (2008) Global investigation of protein–protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences. Nucleic Acids Res 36:4286–4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu C-Y, Chou L-C, Chang DTH (2010) Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC Bioinformatics 11:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhao CY, Jiang M (2014) Predicting protein-protein interactions from protein sequences using probabilistic neural network and feature combination. J Inform Comput Sci 11:2397–2406

    Article  Google Scholar 

  42. You ZH, Lei YK, Zhu L, Xia J, Wang B (2013) Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinformatics 14(Suppl 8):S10

    Article  PubMed  PubMed Central  Google Scholar 

  43. You ZH, Li J, Gao X, He Z, Zhu L, Lei YK, Ji Z (2015) Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines. BioMed Res Int. doi:10.1155/2015/867516

    Google Scholar 

  44. Pawson T, Gish GD, Nash P (2001) SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 11:504–511

    Article  CAS  PubMed  Google Scholar 

  45. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  PubMed  Google Scholar 

  46. Sprinzak E, Margalit H (2001) Correlated sequence-signatures as markers of protein-protein interaction. J Mol Biol 311:681–692

    Article  CAS  PubMed  Google Scholar 

  47. Deng M, Mehta S, Sun F, Chen T (2002) Inferring domain-domain interactions from protein-protein interactions. Genome Res 12:1540–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wojcik J, Boneca IG, Legrain P (2002) Prediction, assessment and validation of protein interaction maps in bacteria. J Mol Biol 323:763–770

    Article  CAS  PubMed  Google Scholar 

  49. Ye Y, Godzik A (2004) Comparative analysis of protein domain organization. Genome Res 14:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu S, Zhang C, Zhou Y (2005) Domain graph of Arabidopsis proteome by comparative analysis. J Proteome Res 4:435–444

    Article  CAS  PubMed  Google Scholar 

  51. Kim I, Liu Y, Zhao H (2007) Bayesian methods for predicting interacting protein pairs using domain information. Biometrics 63:824–833

    Article  CAS  PubMed  Google Scholar 

  52. Hayashida M, Akutsu T (2014) Domain-based approaches to prediction and analysis of protein-protein interactions. Int J Knowl Discov Bioinformatics 4:24–41

    Article  Google Scholar 

  53. Schelhorn S-E, Lengauer T, Albrecht M (2008) An integrative approach for predicting interactions of protein regions. Bioinformatics 24:i35–i41

    Article  PubMed  Google Scholar 

  54. Smith GR, Sternberg MJE (2002) Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12:28–35

    Article  PubMed  Google Scholar 

  55. Lu L, Arakaki AK, Lu H, Skolnick J (2003) Multimeric threading-based prediction of protein-protein interactions on a genomic scale: application to the Saccharomyces cerevisiae proteome. Genome Res 13:1146–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure‐derived potential of mean force for protein folding and binding. Proteins 56:93–101

    Article  CAS  PubMed  Google Scholar 

  57. Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7:188–197

    Article  CAS  PubMed  Google Scholar 

  58. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y (2014) MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Protein Pept Lett 21:766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aloy P, Russell RB (2002) Interrogating protein interaction networks through structural biology. Proc Natl Acad Sci U S A 99:5896–5901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aloy P, Ceulemans H, Stark A, Russell RB (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332:989–998

    Article  CAS  PubMed  Google Scholar 

  61. Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29:482–486

    Article  CAS  PubMed  Google Scholar 

  62. Grigoriev A (2001) A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. Nucleic Acids Res 29:3513–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jansen R, Greenbaum D, Gerstein M (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res 12:37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krishnadev O, Srinivasan N (2008) A data integration approach to predict host-pathogen protein-protein interactions: application to recognize protein interactions between human and a malarial parasite. In Silico Biol 8:235–250

    CAS  PubMed  Google Scholar 

  65. Ofran Y (2009) Prediction of protein interaction sites. In: Computational protein-protein interactions. CRC Press, Boca Raton, FL, pp 167–184

    Chapter  Google Scholar 

  66. Porollo A, Meller J (2007) Prediction-based fingerprints of protein–protein interactions. Proteins 66:630–645

    Article  CAS  PubMed  Google Scholar 

  67. Chakravarty D, Guharoy M, Robert CH, Chakrabarti P, Janin J (2013) Reassessing buried surface areas in protein–protein complexes. Protein Sci 22:1453–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tuncbag N, Kar G, Keskin O, Gursoy A, Nussinov R (2009) A survey of available tools and web servers for analysis of protein–protein interactions and interfaces. Brief Bioinform 10(3):217–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bradford JR, Westhead DR (2005) Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21:1487–1494

    Article  CAS  PubMed  Google Scholar 

  70. Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR (2006) Insights into protein-protein interfaces using a Bayesian network prediction method. J Mol Biol 362:365–386

    Article  CAS  PubMed  Google Scholar 

  71. Fariselli P, Pazos F, Valencia A, Casadio R (2002) Prediction of protein-protein interaction sites in heterocomplexes with neural networks. Eur J Biochem 269:1356–1361

    Article  CAS  PubMed  Google Scholar 

  72. Bordner AJ, Abagyan R (2005) Statistical analysis and prediction of protein-protein interfaces. Proteins 60:353–366

    Article  CAS  PubMed  Google Scholar 

  73. Chen H, Zhou H-X (2005) Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins 61:21–35

    Article  CAS  PubMed  Google Scholar 

  74. DeVries SJ, VanDijk ADJ, Bonvin AMJJ (2006) WHISCY: what information does surface conservation yield? Application to data-driven docking. Proteins 63:479–489

    Article  CAS  Google Scholar 

  75. Liang S, Zhang C, Liu S, Zhou Y (2006) Protein binding site prediction using an empirical scoring function. Nucleic Acids Res 34:3698–3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kufareva I, Budagyan L, Raush E, Totrov M, Abagyan R (2007) PIER: protein interface recognition for structural proteomics. Proteins 67:400–417

    Article  CAS  PubMed  Google Scholar 

  77. Negi SS, Schein CH, Oezguen N, Power TD, Braun W (2007) InterProSurf: a web server for predicting interacting sites on protein surfaces. Bioinformatics 23:3397–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qin S, Zhou HX (2007) meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics 23:3386–3387

    Article  CAS  PubMed  Google Scholar 

  79. Murga LF, Ondrechen MJ, Ringe D (2008) Prediction of interaction sites from apo 3D structures when the holo conformation is different. Proteins 72:980–992

    Article  CAS  PubMed  Google Scholar 

  80. Segura J, Jones PF, Fernandez-Fuentes N (2011) Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams. BMC Bioinformatics 12:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang QC, Deng L, Fisher M, Guan J, Honig B, Petrey D (2011) PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res 39:W283–W287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maheshwari S, Brylinski M (2015) Template-based identification of protein–protein interfaces using eFindSite PPI. Methods. doi:10.1016/j.ymeth.2015.07.017

    PubMed  Google Scholar 

  83. Maheshwari S, Brylinski M (2015) Predicting protein interface residues using easily accessible on-line resources. Brief Bioinformatics. doi:10.1093/bib/bbv009

    PubMed  Google Scholar 

  84. Kini RM, Evans HJ (1996) Prediction of potential protein-protein interaction sites from amino acid sequence. Identification of a fibrin polymerization site. FEBS Lett 385:81–86

    Article  CAS  PubMed  Google Scholar 

  85. Gallet X, Charloteaux B, Thomas A, Brasseur R (2000) A fast method to predict protein interaction sites from sequences. J Mol Biol 302:917–926

    Article  CAS  PubMed  Google Scholar 

  86. Murakami Y, Mizuguchi K (2010) Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites. Bioinformatics 26:1841–1848

    Article  CAS  PubMed  Google Scholar 

  87. Dhole K, Singh G, Pai PP, Mondal S (2014) Sequence-based prediction of protein–protein interaction sites with L1-logreg classifier. J Theor Biol 348:47–54

    Article  CAS  PubMed  Google Scholar 

  88. Xue LC, Dobbs D, Honavar V (2011) HomPPI: a class of sequence homology based protein-protein interface prediction methods. BMC Bioinformatics 12:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chothia C, Janin J (1975) Principles of protein-protein recognition. Nature 256:705–708

    Article  CAS  PubMed  Google Scholar 

  90. Horton N, Lewis M (1992) Calculation of the free energy of association for protein complexes. Protein Sci 1:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ma XH, Wang CX, Li CH, Chen WZ (2002) A fast empirical approach to binding free energy calculations based on protein interface information. Protein Eng 15:677–681

    Article  CAS  PubMed  Google Scholar 

  92. Jiang L, Gao Y, Mao F, Liu Z, Lai L (2002) Potential of mean force for protein-protein interaction studies. Proteins 46:190–196

    Article  CAS  PubMed  Google Scholar 

  93. Audie J, Scarlata S (2007) A novel empirical free energy function that explains and predicts protein-protein binding affinities. Biophys Chem 129:198–211

    Article  CAS  PubMed  Google Scholar 

  94. Su Y, Zhou A, Xia X, Li W, Sun Z (2009) Quantitative prediction of protein-protein binding affinity with a potential of mean force considering volume correction. Protein Sci 18:2550–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kastritis PL, Bonvin AMJJ (2010) Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. J Proteome Res 9:2216–2225

    Article  CAS  PubMed  Google Scholar 

  96. Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA, Bonvin AMJJ, Janin J (2011) A structure-based benchmark for protein-protein binding affinity. Protein Sci 20:482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moal IH, Agius R, Bates PA (2011) Protein-protein binding affinity prediction on a diverse set of structures. Bioinformatics 27:3002–3009

    Article  CAS  PubMed  Google Scholar 

  98. Vreven T, Hwang H, Pierce BG, Weng Z (2012) Prediction of protein-protein binding free energies. Protein Sci 21:396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tian F, Lv Y, Yang L (2012) Structure-based prediction of protein-protein binding affinity with consideration of allosteric effect. Amino Acids 43:531–543

    Article  CAS  PubMed  Google Scholar 

  100. Zhou P, Wang C, Tian F, Ren Y, Yang C, Huang J (2013) Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des 27:67–78

    Article  PubMed  CAS  Google Scholar 

  101. Kastritis PL, Bonvin AMJJ (2013) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10:20120835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Vangone A, Bonvin AMJJ (2015) Contacts-based prediction of binding affinity in protein–protein complexes. eLife 4:e07454

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yugandhar K, Gromiha MM (2014) Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches. Proteins 82:2088–2096

    Article  CAS  PubMed  Google Scholar 

  104. Yugandhar K, Gromiha MM (2015) Analysis of protein-protein interaction networks based on binding affinity. Curr Protein Pept Sci 17:72–81

    Google Scholar 

  105. Yugandhar K, Gromiha MM (2014) Protein-protein binding affinity prediction from amino acid sequence. Bioinformatics 30:3583–3589

    Article  CAS  PubMed  Google Scholar 

  106. Yugandhar K, Gromiha MM (2015) Response to the comment on “protein‐protein binding affinity prediction from amino acid sequence”. Bioinformatics 31:978

    Article  CAS  PubMed  Google Scholar 

  107. Swapna LS, Bhaskara RM, Sharma J, Srinivasan N (2012) Roles of residues in the interface of transient protein-protein complexes before complexation. Sci Rep 2:1–9

    Article  CAS  Google Scholar 

  108. Janin J (2014) A minimal model of protein-protein binding affinities. Protein Sci 23:1813–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kastritis PL, Rodrigues JPGLM, Folkers GE, Boelens R, Bonvin AMJJ (2014) Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface. J Mol Biol 426:2632–2652

    Article  CAS  PubMed  Google Scholar 

  110. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085

    Article  CAS  PubMed  Google Scholar 

  111. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  CAS  PubMed  Google Scholar 

  112. Cunningham BC, Wells JA (1993) Comparison of a structural and a functional epitope. J Mol Biol 234:554–563

    Article  CAS  PubMed  Google Scholar 

  113. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386

    Article  CAS  PubMed  Google Scholar 

  114. Hu Z, Ma B, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Proteins 39:331–342

    Article  CAS  PubMed  Google Scholar 

  115. DeLano WL (2002) Unraveling hot spots in binding interfaces: Progress and challenges. Curr Opin Struct Biol 12:14–20

    Article  CAS  PubMed  Google Scholar 

  116. Halperin I, Wolfson H, Nussinov R (2004) Protein-protein interactions: coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. Structure 12:1027–1038

    Article  CAS  PubMed  Google Scholar 

  117. Janin J (2009) Basic principles of protein-protein interaction. In: Computational protein-protein interactions. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  118. Monod J, Changeux J-P, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    Article  CAS  PubMed  Google Scholar 

  119. Kuriyan J, Eisenberg D (2007) The origin of protein interactions and allostery in colocalization. Nature 450:983–990

    Article  CAS  PubMed  Google Scholar 

  120. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Suppl 1):D449–D451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Suppl 1):D535–D539

    Article  CAS  PubMed  Google Scholar 

  122. Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Kishore CJH, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database-2009 update. Nucleic Acids Res 37:D767–D772

    Article  CAS  Google Scholar 

  123. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Suppl 1):D561–D568

    Article  CAS  PubMed  Google Scholar 

  124. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering R C, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H (2013) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res gkt1115

    Google Scholar 

  125. deBeer TAP, Berka K, Thornton JM, Laskowski RA (2014) PDBsum additions. Nucleic Acids Res 42:D292–D296

    Article  CAS  Google Scholar 

  126. Kumar MS, Gromiha MM (2006) PINT: protein-protein interactions thermodynamic database. Nucleic Acids Res 34(suppl 1):D195–D198

    Article  CAS  PubMed  Google Scholar 

  127. Wang R, Fang X, Lu Y, Yang CY, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48:4111–4119

    Article  CAS  PubMed  Google Scholar 

  128. Kumar P, Han B-C, Shi Z, Jia J, Wang YP, Zhang YT, Liang L, Liu QF, Ji ZL, Chen YZ (2009) Update of KDBI: kinetic data of bio-molecular interaction database. Nucleic Acids Res 37:D636–D641

    Article  CAS  PubMed  Google Scholar 

  129. Moal IH, Fernández-Recio J (2012) SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics 28:2600–2607

    Article  CAS  PubMed  Google Scholar 

  130. Thorn KS, Bogan AA (2001) ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17:284–285

    Article  CAS  PubMed  Google Scholar 

  131. Vreven T, Moal IM, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jimenez-Garcia B, Bates PA, Fernandez-Recio J, Bonvin AMJJ, Weng Z (2015) Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. J Mol Biol 427:3031–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

KY thanks the University Grants Commission (UGC), Government of India, for providing research fellowship. We thank the Bioinformatics facility and Indian Institute of Technology Madras for computational facilities. The work was partially supported by the Department of Science and Technology, India, to MMG (SR/SO/BB-0036/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Michael Gromiha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yugandhar, K., Gromiha, M.M. (2017). Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein–Protein Complexes. In: Zhou, Y., Kloczkowski, A., Faraggi, E., Yang, Y. (eds) Prediction of Protein Secondary Structure. Methods in Molecular Biology, vol 1484. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6406-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6406-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6404-8

  • Online ISBN: 978-1-4939-6406-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics