Skip to main content

How to Predict Disorder in a Protein of Interest

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1484))

Abstract

Currently available computational tools, which are many, provide a researcher with the multitude of options for prediction of intrinsic disorder in a protein of interest and for finding at least some of its disorder-based functions. This chapter provides a highly subjective guideline on how not to be lost in the “dark forest” of available tools for the analysis of intrinsic disorder. By no means it gives a unique pathway through this forest, but simply presents some of the tools the author uses in his everyday research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fischer E (1894) Einfluss der configuration auf die wirkung der enzyme. Ber Dt Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  2. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  PubMed  Google Scholar 

  3. Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068

    Article  PubMed  CAS  Google Scholar 

  4. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    Article  CAS  PubMed  Google Scholar 

  5. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    Article  CAS  PubMed  Google Scholar 

  6. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149

    Article  CAS  PubMed  Google Scholar 

  8. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151

    Article  CAS  PubMed  Google Scholar 

  9. Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53(S6):566–572

    Article  CAS  PubMed  Google Scholar 

  10. Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 473–484

    Google Scholar 

  11. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    Article  CAS  PubMed  Google Scholar 

  12. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    Article  CAS  PubMed  Google Scholar 

  13. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    Article  CAS  PubMed  Google Scholar 

  14. Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Handbook of protein folding. Wiley-VCH, Verlag GmbH & Co., KGaA, Weinheim, Germany, pp 271–353

    Google Scholar 

  15. Uversky VN, Dunker AK (2013) The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol Rep 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60(9):1852–1871

    Article  CAS  PubMed  Google Scholar 

  17. Zhang T, Faraggi E, Li Z, Zhou Y (2013) Intrinsically semi-disordered state and its role in induced folding and protein aggregation. Cell Biochem Biophys 67(3):1193–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834(5):932–951

    Article  CAS  PubMed  Google Scholar 

  19. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22(6):693–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bracken C, Iakoucheva LM, Romero PR, Dunker AK (2004) Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 14(5):570–576

    Article  CAS  PubMed  Google Scholar 

  22. Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62(1):24–45

    Article  CAS  PubMed  Google Scholar 

  23. Uversky VN, Dunker AK (2012) Multiparametric analysis of intrinsically disordered proteins: looking at intrinsic disorder through compound eyes. Anal Chem 84(5):2096–2104

    Article  CAS  PubMed  Google Scholar 

  24. Uversky VN (2015) Biophysical methods to investigate intrinsically disordered proteins: avoiding an “Elephant and Blind Men” situation. Adv Exp Med Biol 870:215–260

    Article  CAS  PubMed  Google Scholar 

  25. Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Methods Enzymol 131:389–433

    Article  CAS  PubMed  Google Scholar 

  26. Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62:311–340

    Article  CAS  PubMed  Google Scholar 

  27. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104(8):3607–3622

    Article  CAS  PubMed  Google Scholar 

  28. Dyson HJ, Wright PE (2005) Elucidation of the protein folding landscape by NMR. Methods Enzymol 394:299–321

    Article  CAS  PubMed  Google Scholar 

  29. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenem Press, New York

    Book  Google Scholar 

  30. Adler AJ, Greenfield NJ, Fasman GD (1973) Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol 27:675–735

    Article  CAS  PubMed  Google Scholar 

  31. Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20(1):33–37

    Article  CAS  PubMed  Google Scholar 

  32. Woody RW (1995) Circular dichroism. Methods Enzymol 246:34–71

    Article  CAS  PubMed  Google Scholar 

  33. Smyth E, Syme CD, Blanch EW, Hecht L, Vasak M, Barron LD (2001) Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58(2):138–151

    Article  CAS  PubMed  Google Scholar 

  34. Uversky VN (1999) A multiparametric approach to studies of self-organization of globular proteins. Biochemistry (Mosc) 64(3):250–266

    CAS  Google Scholar 

  35. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  36. Markus G (1965) Protein substrate conformation and proteolysis. Proc Natl Acad Sci U S A 54:253–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mikhalyi E (1978) Application of proteolytic enzymes to protein structure studies. CRC Press, Boca Raton

    Google Scholar 

  38. Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fontana A, de Laureto PP, de Filippis V, Scaramella E, Zambonin M (1997) Probing the partly folded states of proteins by limited proteolysis. Fold Des 2:R17–R26

    Article  CAS  PubMed  Google Scholar 

  40. Fontana A, de Laureto PP, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51(2):299–321

    CAS  PubMed  Google Scholar 

  41. Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ (2001) Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 10:1353–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241

    Article  CAS  PubMed  Google Scholar 

  43. Ptitsyn O (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  CAS  PubMed  Google Scholar 

  44. Ptitsyn OB, Uversky VN (1994) The molten globule is a third thermodynamical state of protein molecules. FEBS Lett 341:15–18

    Article  CAS  PubMed  Google Scholar 

  45. Uversky VN, Ptitsyn OB (1996) All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold Des 1(2):117–122

    Article  CAS  PubMed  Google Scholar 

  46. Westhof E, Altschuh D, Moras D, Bloomer AC, Mondragon A, Klug A, Van Regenmortel MH (1984) Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311(5982):123–126

    Article  CAS  Google Scholar 

  47. Berzofsky JA (1985) Intrinsic and extrinsic factors in protein antigenic structure. Science 229(4717):932–940

    Article  CAS  PubMed  Google Scholar 

  48. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  49. Wootton JC (1993) Statistic of local complexity in amino acid sequences and sequence databases. Comput Chem 17:149–163

    Article  CAS  Google Scholar 

  50. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13(1):71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Dunker AK (1997) Identifying disordered regions in proteins from amino acid sequences. IEEE Int Conf Neural Netw 1:90–95

    CAS  Google Scholar 

  52. Lise S, Jones DT (2005) Sequence patterns associated with disordered regions in proteins. Proteins 58(1):144–150

    Article  CAS  PubMed  Google Scholar 

  53. Ferron F, Longhi S, Canard B, Karlin D (2006) A practical overview of protein disorder prediction methods. Proteins 65(1):1–14

    Article  CAS  PubMed  Google Scholar 

  54. Dosztanyi Z, Sandor M, Tompa P, Simon I (2007) Prediction of protein disorder at the domain level. Curr Protein Pept Sci 8(2):161–171

    Article  CAS  PubMed  Google Scholar 

  55. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949

    Article  CAS  PubMed  Google Scholar 

  56. Kurgan L, Disfani FM (2011) Structural protein descriptors in 1-dimension and their sequence-based predictions. Curr Protein Pept Sci 12(6):470–489

    Article  CAS  PubMed  Google Scholar 

  57. Cozzetto D, Jones DT (2013) The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr Opin Struct Biol 23(3):467–472

    Article  CAS  PubMed  Google Scholar 

  58. Atkins JD, Boateng SY, Sorensen T, McGuffin LJ (2015) Disorder prediction methods, their applicability to different protein targets and their usefulness for guiding experimental studies. Int J Mol Sci 16(8):19040–19054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Varadi M, Vranken W, Guharoy M, Tompa P (2015) Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci 2:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Garner E, Romero P, Dunker AK, Brown C, Obradovic Z (1999) Predicting binding regions within disordered proteins. Genome Inform 10:41–50

    CAS  Google Scholar 

  61. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470

    Article  CAS  PubMed  Google Scholar 

  62. Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (2006) Analysis of molecular recognition features (MoRFs). J Mol Biol 362(5):1043–1059

    Article  CAS  PubMed  Google Scholar 

  63. Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (2007) Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28(12):i75–i83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DM, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839

    Article  CAS  PubMed  Google Scholar 

  68. Peng Z, Wang C, Uversky VN, Kurgan L (2016) Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. In: Kloczkowski A, Zhou Y, Faraggi E, Yang Y (eds) Prediction of protein secondary structure and other one-dimensional structural properties, Methods in molecular biology. Springer, New York

    Google Scholar 

  69. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23(8):1077–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Uversky VN, Radivojac P, Iakoucheva LM, Obradovic Z, Dunker AK (2007) Prediction of intrinsic disorder and its use in functional proteomics. Methods Mol Biol 408:69–92

    Article  CAS  PubMed  Google Scholar 

  72. Ritter LM, Arakawa T, Goldberg AF (2005) Predicted and measured disorder in peripherin/rds, a retinal tetraspanin. Protein Pept Lett 12(7):677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kukhtina V, Kottwitz D, Strauss H, Heise B, Chebotareva N, Tsetlin V, Hucho F (2006) Intracellular domain of nicotinic acetylcholine receptor: the importance of being unfolded. J Neurochem 97(Suppl 1):63–67

    Google Scholar 

  74. Yiu CP, Beavil RL, Chan HY (2006) Biophysical characterisation reveals structural disorder in the nucleolar protein, Dribble. Biochem Biophys Res Commun 343(1):311–318

    Article  CAS  PubMed  Google Scholar 

  75. Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DC, Day CL (2007) Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ 14(1):128–136

    Google Scholar 

  76. Nardini M, Svergun D, Konarev PV, Spano S, Fasano M, Bracco C, Pesce A, Donadini A, Cericola C, Secundo F, Luini A, Corda D, Bolognesi M (2006) The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci 15(5):1042–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roy S, Schnell S, Radivojac P (2006) Unraveling the nature of the segmentation clock: intrinsic disorder of clock proteins and their interaction map. Comput Biol Chem 30(4):241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Popovic M, Coglievina M, Guarnaccia C, Verdone G, Esposito G, Pintar A, Pongor S (2006) Gene synthesis, expression, purification, and characterization of human Jagged-1 intracellular region. Protein Expr Purif 47(2):398–404

    Article  CAS  PubMed  Google Scholar 

  79. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  CAS  PubMed  Google Scholar 

  80. Cheng Y, Le Gall T, Oldfield CJ, Dunker AK, Uversky VN (2006) Abundance of intrinsic disorder in proteins associated with cardiovascular disease. Biochemistry 45(35):10448–10460

    Article  CAS  PubMed  Google Scholar 

  81. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK (2006) Intrinsic disorder in transcription factors. Biochemistry 45(22):6873–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh GP, Ganapathi M, Sandhu KS, Dash D (2006) Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins 62(2):309–315

    Article  CAS  PubMed  Google Scholar 

  83. Hansen JC, Lu X, Ross ED, Woody RW (2006) Intrinsic protein disorder, amino acid composition, and histone terminal domains. J Biol Chem 281(4):1853–1856

    Article  CAS  PubMed  Google Scholar 

  84. Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol Biosyst 8(7):1886–1901

    Article  CAS  PubMed  Google Scholar 

  85. Peng Z, Oldfield CJ, Xue B, Mizianty MJ, Dunker AK, Kurgan L, Uversky VN (2014) A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cell Mol Life Sci 71(8):1477–1504

    Article  CAS  PubMed  Google Scholar 

  86. Xue B, Mizianty MJ, Kurgan L, Uversky VN (2012) Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 69(8):1211–1259

    Article  CAS  PubMed  Google Scholar 

  87. Fan X, Xue B, Dolan PT, LaCount DJ, Kurgan L, Uversky VN (2014) The intrinsic disorder status of the human hepatitis C virus proteome. Mol Biosyst 10(6):1345–1363

    Article  CAS  PubMed  Google Scholar 

  88. Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S (2014) Structural disorder in viral proteins. Chem Rev 114(13):6880–6911

    Article  CAS  PubMed  Google Scholar 

  89. Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN (2015) Unstructural biology of the dengue virus proteins. FEBS J 282(17):3368–3394

    Article  CAS  PubMed  Google Scholar 

  90. Goh GK, Dunker AK, Uversky VN (2015) Detection of links between Ebola nucleocapsid and virulence using disorder analysis. Mol Biosyst 11(8):2337–2344

    Article  CAS  PubMed  Google Scholar 

  91. Goh GK, Dunker AK, Uversky VN (2015) Shell disorder, immune evasion and transmission behaviors among human and animal retroviruses. Mol Biosyst 11(8):2312–2323

    Article  CAS  PubMed  Google Scholar 

  92. Dolan PT, Roth AP, Xue B, Sun R, Dunker AK, Uversky VN, LaCount DJ (2015) Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions. Protein Sci 24(2):221–235

    Article  CAS  PubMed  Google Scholar 

  93. Haynes C, Iakoucheva LM (2006) Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins. Nucleic Acids Res 34(1):305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bustos DM, Iglesias AA (2006) Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins 63(1):35–42

    Article  CAS  PubMed  Google Scholar 

  95. Denning DP, Patel SS, Uversky V, Fink AL, Rexach M (2003) Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A 100(5):2450–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, Iakoucheva LM, Cortese MS, Lawson JD, Brown CJ, Sikes JG, Newton CD, Dunker AK (2005) DisProt: a database of protein disorder. Bioinformatics 21(1):137–140

    Article  CAS  PubMed  Google Scholar 

  98. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–D793

    Article  CAS  PubMed  Google Scholar 

  99. Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 8:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1):35–60

    Article  CAS  PubMed  Google Scholar 

  101. Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61(Suppl 7):176–182

    Article  CAS  PubMed  Google Scholar 

  102. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7(1):208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804(4):996–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000

    Article  CAS  PubMed  Google Scholar 

  105. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516

    Article  CAS  PubMed  Google Scholar 

  106. Di Domenico T, Walsh I, Martin AJ, Tosatto SC (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28(15):2080–2081

    Article  PubMed  CAS  Google Scholar 

  107. Potenza E, Domenico TD, Walsh I, Tosatto SC (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43(Database issue):D315–D320

    Article  CAS  PubMed  Google Scholar 

  108. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen L.J, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res, 2011;39:D561–568

    Google Scholar 

  109. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52:573–584

    Article  CAS  PubMed  Google Scholar 

  110. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438

    Article  CAS  PubMed  Google Scholar 

  111. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    Article  CAS  PubMed  Google Scholar 

  112. Campen A, Williams RM, Brown CJ, Meng J, Uversky VN, Dunker AK (2008) TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept Lett 15(9):956–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang F, Oldfield C, Meng J, Hsu WL, Xue B, Uversky VN, Romero P, Dunker AK (2012) Subclassifying disordered proteins by the CH-CDF plot method. Pac Symp Biocomput 128–139

    Google Scholar 

  114. Huang F, Oldfield CJ, Xue B, Hsu WL, Meng J, Liu X, Shen L, Romero P, Uversky VN, Dunker A (2014) Improving protein order-disorder classification using charge-hydropathy plots. BMC Bioinformatics 15(Suppl 17):S4

    Article  Google Scholar 

  115. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7

    Google Scholar 

  116. Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460–W464

    Article  PubMed  PubMed Central  Google Scholar 

  117. Walsh I, Martin AJ, Di Domenico T, Tosatto SC (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28(4):503–509

    Article  CAS  PubMed  Google Scholar 

  118. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  CAS  PubMed  Google Scholar 

  119. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376

    Article  CAS  PubMed  Google Scholar 

  121. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12(1):54–60

    Article  CAS  PubMed  Google Scholar 

  122. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  CAS  PubMed  Google Scholar 

  123. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6):2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Uversky VN (2013) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19(23):4191–4213

    Article  CAS  PubMed  Google Scholar 

  125. Daily KM, Radivojac P, Dunker AK. Intrinsic disorder and protein modifications: building an SVM predictor for methylation. In: IEEE symposium on computational intelligence in bioinformatics and computational biology, CIBCB 2005, San Diego, CA, USA, November 2005, pp 475–481

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Russian Science Foundation RSCF № 14-24-00131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Uversky, V.N. (2017). How to Predict Disorder in a Protein of Interest. In: Zhou, Y., Kloczkowski, A., Faraggi, E., Yang, Y. (eds) Prediction of Protein Secondary Structure. Methods in Molecular Biology, vol 1484. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6406-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6406-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6404-8

  • Online ISBN: 978-1-4939-6406-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics