Skip to main content

The CE-Way of Thinking: “All Is Relative!”

  • Protocol
  • First Online:
Book cover Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1483))

Abstract

Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.

Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.

The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size—see chapter on semiempirical modelization).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgenson JW, Lukacs KD (1981) Zone electrophoresis in open-tubular glass capillaries. Anal Chem 53:1298–1302

    Article  CAS  Google Scholar 

  2. Jorgenson JW, Lukacs KD (1983) Capillary zone electrophoresis. Science 222:266–272

    Article  CAS  PubMed  Google Scholar 

  3. Shintani H, Polonski J (1997) Handbook of capillary electrophoresis applications, vol 737. Blackie Avademic & Professional, London

    Google Scholar 

  4. Rhighetti PG (1996) Capillary electrophoresis in analytical biotechnology, vol 551, CRC series in analytical biotechnology. CRC Press, Boca Raton

    Google Scholar 

  5. Li SFY (1993) Capillary electrophoresis. Principles, practice and applications. J Chrom Libr 52:582, Elsevier, Amsterdam

    Google Scholar 

  6. Kuhn R, Hoffstetter-Kuhn S (1993) Capillary electrophoresis: principles and practise. Springer, Heidelberg, Berlin

    Book  Google Scholar 

  7. Khaledi MG (1998) High-performance capillary electrophoresis: theory techniques, and applications, vol 1050. Wiley, Chichester

    Google Scholar 

  8. Guzman NA (1993) Capillary electrophoresis technology, vol 64, Chromatographic science series. Marcel Decker Inc., New York, p 857

    Google Scholar 

  9. Baker DR (1995) Capillary electrophoresis, vol 244. Wiley, New York

    Google Scholar 

  10. Chankvetadze B (1997) Capillary electrophoresis in chiral analysis. Wiley, Chichester, p 555

    Google Scholar 

  11. Deyl Z, Miksik I, Tagliaro F, Tesarova E Editors, (1998) Advanced chromatographic and electromigration methods in biosciences. ELSEVIER, 1125 pages.

    Google Scholar 

  12. Whatley H (1999) Making CE work—poonts to consider. LC-GC Europe 12:762–766

    Google Scholar 

  13. Shihabi ZK, Hinsdale M (1995) Some variable affecting reproducibility in capillary electrophoresis. Electrophoresis 16:2159–2163

    Article  CAS  PubMed  Google Scholar 

  14. Chapman J, Hobbs J (1999) Putting capillary electrophoresis to work. LC-GC Europe 12:266–279

    Google Scholar 

  15. Faler T, Engelhardt H (1999) How to achieve higher repeatability and reproducibility in capillary electrophoresis. J Chromatogr A 853:83–94

    Article  Google Scholar 

  16. Schmitt-Kopplin P, Fischer K, Freitag D, Kettrup A (1998) Capillary electrophoresis for the simultaneous separation of selected carboxylated carbohydrates and their related 1,4-lactons. J Chromatogr A 807:89–100

    Article  CAS  Google Scholar 

  17. Hudson JC, Malcom MJ, Golin M (1998) Advancements in forensic toxicology. Page Setter Beckman Coulter, p 2

    Google Scholar 

  18. Hudson JC, Golin M, Malcom M (1995) Capillary zone electrophoresis in a comprehensive screen for basic drugs in whole blood. Can Soc Forensic Sci 28:153–164

    Article  Google Scholar 

  19. Hudson JC, Golin M, Malcom M, Whiting CF (1998) Capillary zone electrophoresis in a comprehensive screen for drugs of forensic interest in whole blood: an update. Can Soc Forensic Sci 31:1–29

    Article  CAS  Google Scholar 

  20. Iwata T, Koshoubu J, Kurosu Y (1998) Electropherograms in capillary zone electrophoresis plotted as a function of the quantity of electric charge. J Chromatogr A 810:183–191

    Article  CAS  Google Scholar 

  21. Mammen M, Colton IJ, Carbeck JD, Bradley R, Whitesides GM (1997) Representing primary electrophoretic data in the 1/time domain: comparison to representations in the time domain. Anal Chem 69:2165–2170

    Article  CAS  PubMed  Google Scholar 

  22. Lee TT, Yeung ES (1991) Facilitating data transfer and improving precision in capillary zone electrophoresis with migration indices. Anal Chem 63:2842–2848

    Article  CAS  Google Scholar 

  23. Yang J, Bose S, Hage DS (1996) Improved reproducibility in capillary electrophoresis through the use of mobility and migration time ratios. J Chromatogr A 735:209–220

    Article  CAS  Google Scholar 

  24. Kenndler E (1996) Effect of electroosmotic flow on selectivity, effiency and resolution in capillary zone electrophoresis expressed by the dimensionless reduced mobility. J Capillary Electrophor 3:191–198

    CAS  PubMed  Google Scholar 

  25. Kenndler E (1998) Dependence of analyte separation on electroosmotic flow in capillary zone electrophoresis: quantitative description by the reduced mobility. J Microcolumn Sep 10(3):273–279

    Article  CAS  Google Scholar 

  26. Schmitt-Kopplin P, Garmash AV, Kudryavtsev AV, Perminova IV, Hertkorn N, Freitag D, Kettrup A (1999) Mobility distribution description of synthetic and natural polyelectrolytes with capillary zone electrophoresis. J AOAC Int 82:1594–1603

    CAS  Google Scholar 

  27. Schmitt-Kopplin P, Menzinger F, Freitag D, Kettrup A (2001) Improving the use of CE in a chromatographer’s world. LC-GC Europe 14:284–388

    Google Scholar 

  28. Schmitt-Kopplin P, Garmash AV, Kudryavtsev AV, Menzinger F, Perminova IV, Hertkorn N, Freitag D, Petrosyan VS, Kettrup A (2001) Quantitative and qualitative precision improvements by effective mobility-scale data transformation in capillary electrophoresis analysis. Electrophoresis 22:77–87

    Article  CAS  PubMed  Google Scholar 

  29. Whatley H (1997) Mobility determinations in capillary electrophoresis. Tech Inform Beckman

    Google Scholar 

  30. Garrison AW, Schmitt P, Martens D, Kettrup A (1996) Enantiomeric selectivity in the environmental degradation of Dichlorprop as determined by high performance capillary electrophoresis. Environ Sci Technol 30:2449–2455

    Article  CAS  Google Scholar 

  31. Schmitt-Kopplin P, Burhenne J, Freitag D, Spiteller M, Kettrup A (1999) Developement of capillary electrophoresis methods for the analysis of fluoroquinolones and applications to the study of the influence of humic substances on their photodegradation in aqueous phase. J Chromatogr A 837:253–265

    Article  CAS  Google Scholar 

  32. Schmitt P, Trapp I, Garrison AW, Freitag D, Kettrup A (1997) Binding of s-triazines to dissolved humic substances: electrophoretic approaches using affinity capillary electrophoresis (ACE) and micellar electrokinetic chromatography (MEKC). Chemosphere 35:55–75

    Article  CAS  Google Scholar 

  33. Schmitt-Kopplin P, Garrison AW, Perdue EM, Freitag D, Kettrup A (1998) Capillary electrophoresis in humic substances analysis, facts and artifacts. J Chromatogr A 807:101–109

    Article  CAS  Google Scholar 

  34. Breuer D, Fischer K, Hansen K, Fekete A, Lahaniatis M, Ph S-K (2003) Benzotriazole (1,2,3-benzotriazole, 5-methyl-1H-benzotriazole, 5,6-dimethylbenzotriazole). In: Kettrup A (ed) Analytische methoden band 1, Deutschen Forschungsgemeinschaft, Senatskommosion zur Prüfung gesundheitsschädlicher Arbeitsstoffe-Arbeitsgruppe “Analytische Chemie” p 13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Schmitt-Kopplin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmitt-Kopplin, P., Fekete, A. (2016). The CE-Way of Thinking: “All Is Relative!”. In: Schmitt-Kopplin, P. (eds) Capillary Electrophoresis. Methods in Molecular Biology, vol 1483. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6403-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6403-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6401-7

  • Online ISBN: 978-1-4939-6403-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics