Skip to main content

Quantitative Analysis of Protein–DNA Interaction by qDPI-ELISA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1482))

Abstract

The specific binding of DNA-binding proteins to their cognate DNA motifs is a crucial step for gene expression control and chromatin organization in vivo. The development of methods for the identification of in vivo binding regions by, e.g. chromatin immunoprecipitation (ChIP) or DNA adenine methyltransferase identification (Dam-ID) added an additional level of qualitative information for data mining in systems biology or applications in synthetic biology. In this respect, the in vivo techniques outpaced methods for thorough characterization of protein–DNA interaction and, especially, of the binding motifs at single base-pair resolution. The elucidation of DNA-binding capacities of proteins is frequently done with methods such as yeast one-hybrid, electrophoretic mobility shift assay (EMSA) or systematic evolution of ligands by exponential enrichment (SELEX) that provide only qualitative binding information and are not suited for automation or high-throughput screening of several DNA motifs. Here, we describe the quantitative DNA–protein-Interaction-ELISA (qDPI-ELISA) protocol, which makes use of fluorescent fusion proteins and, hence, is faster and easier to handle than the classical DPI-ELISA. Although every DPI-ELISA experiment delivers quantitative information, the qDPI-ELISA has an increased consistency, as it does not depend on immunological detection. We demonstrate the high comparability between probes and different protein extracts in qDPI-ELISA experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brand LH, Satbhai SB, Kolukisaoglu Ü, Wanke D (2013) Limits and prospects of methods for the analysis of DNA-protein interaction. In: Berendzen KW (ed.), Kilian J, Wanke D (co-eds.) The analysis of regulatory DNA: current developments, knowledge and applications uncovering gene regulation. Bentham Science Publishers, pp. 124–148

    Google Scholar 

  2. Gordan R, Hartemink AJ, Bulyk ML (2009) Distinguishing direct versus indirect transcription factor-DNA interactions. Genome Res 19:2090–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Massie CE, Mills IG (2008) ChIPping away at gene regulation. EMBO Rep 9:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Germann S, Gaudin V (2011) Mapping in vivo protein-DNA interactions in plants by DamID, a DNA adenine methylation-based method. Methods Mol Biol 754:307–321

    Article  CAS  PubMed  Google Scholar 

  5. Orian A, Abed M, Kenyagin-Karsenti D, Boico O (2009) DamID: a methylation-based chromatin profiling approach. Methods Mol Biol 567:155–169

    Article  PubMed  Google Scholar 

  6. Brand LH, Henneges C, Schussler A, Kolukisaoglu HU, Koch G, Wallmeroth N, Hecker A, Thurow K, Zell A, Harter K et al (2013) Screening for protein-DNA interactions by automatable DNA-protein interaction ELISA. PLoS One 8, e75177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS (2010) Origins of specificity in protein-DNA recognition. Annu Rev Biochem 79:233–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rohs R, West SM, Liu P, Honig B (2009) Nuance in the double-helix and its role in protein-DNA recognition. Curr Opin Struct Biol 19:171–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schroder A, Eichner J, Supper J, Wanke D, Henneges C, Zell A (2010) Predicting DNA-binding specificities of eukaryotic transcription factors. PLoS One 5, e13876

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fried MG, Bromberg JL (1997) Factors that affect the stability of protein-DNA complexes during gel electrophoresis. Electrophoresis 18:6–11

    Article  CAS  PubMed  Google Scholar 

  11. Gaudreault M, Gingras ME, Lessard M, Leclerc S, Guerin SL (2009) Electrophoretic mobility shift assays for the analysis of DNA-protein interactions. Methods Mol Biol 543:15–35

    Article  CAS  PubMed  Google Scholar 

  12. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong D, Teixeira A, Oikonomopoulos S, Humburg P, Lone IN, Saliba D, Siggers T, Bulyk M, Angelov D, Dimitrov S et al (2011) Extensive characterization of NF-kappaB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol 12:R70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chai C, Xie Z, Grotewold E (2011) SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a powerful tool for deciphering the protein-DNA interaction space. Methods Mol Biol 754:249–258

    Article  CAS  PubMed  Google Scholar 

  15. Roulet E, Busso S, Camargo AA, Simpson AJ, Mermod N, Bucher P (2002) High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 20:831–835

    Article  CAS  PubMed  Google Scholar 

  16. Bonvin AM, Boelens R, Kaptein R (2005) NMR analysis of protein interactions. Curr Opin Chem Biol 9:501–508

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Kuwahara H, Gao X (2014) Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels. BMC Syst Biol 8:S5

    Article  Google Scholar 

  18. Agius P, Arvey A, Chang W, Noble WS, Leslie C (2010) High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions. PLoS Comput Biol 6, e1000916

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berger MF, Bulyk ML (2009) Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4:393–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bulyk ML (2006) Analysis of sequence specificities of DNA-binding proteins with protein binding microarrays. Methods Enzymol 410:279–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 41:9764–9778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brand LH, Kirchler T, Hummel S, Chaban C, Wanke D (2010) DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro. Plant Methods 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hecker A, Brand LH, Peter S, Simoncello N, Kilian J, Harter K, Gaudin V, Wanke D (2015) The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs. Plant Physiol 168:1013–1024

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alonso N, Guillen R, Chambers JW, Leng F (2015) A rapid and sensitive high-throughput screening method to identify compounds targeting protein-nucleic acids interactions. Nucleic Acids Res 43, e52

    Article  PubMed  PubMed Central  Google Scholar 

  25. Soyk S, Simkova K, Zurcher E, Luginbuhl L, Brand LH, Vaughan CK, Wanke D, Zeeman SC (2014) The enzyme-like domain of Arabidopsis nuclear beta-amylases is critical for DNA sequence recognition and transcriptional activation. Plant Cell 26:1746–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santi L, Wang Y, Stile MR, Berendzen K, Wanke D, Roig C, Pozzi C, Muller K, Muller J, Rohde W et al (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J 34:813–826

    Article  CAS  PubMed  Google Scholar 

  27. Kooiker M, Airoldi CA, Losa A, Manzotti PS, Finzi L, Kater MM, Colombo L (2005) BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. Plant Cell 17:722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We like to thank Luise H. Brand and Klaus Harter for continuous support. We acknowledge Angelika Anna and Sabine Hummel for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Wanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fischer, S.M., Böser, A., Hirsch, J.P., Wanke, D. (2016). Quantitative Analysis of Protein–DNA Interaction by qDPI-ELISA. In: Hehl, R. (eds) Plant Synthetic Promoters. Methods in Molecular Biology, vol 1482. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6396-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6396-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6394-2

  • Online ISBN: 978-1-4939-6396-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics