Skip to main content

Bioinformatic Identification of Conserved Cis-Sequences in Coregulated Genes

  • Protocol
  • First Online:
Plant Synthetic Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1482))

Abstract

Bioinformatics tools can be employed to identify conserved cis-sequences in sets of coregulated plant genes because more and more gene expression and genomic sequence data become available. Knowledge on the specific cis-sequences, their enrichment and arrangement within promoters, facilitates the design of functional synthetic plant promoters that are responsive to specific stresses. The present chapter illustrates an example for the bioinformatic identification of conserved Arabidopsis thaliana cis-sequences enriched in drought stress-responsive genes. This workflow can be applied for the identification of cis-sequences in any sets of coregulated genes. The workflow includes detailed protocols to determine sets of coregulated genes, to extract the corresponding promoter sequences, and how to install and run a software package to identify overrepresented motifs. Further bioinformatic analyses that can be performed with the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hehl R, Wingender E (2001) Database-assisted promoter analysis. Trends Plant Sci 6:251–255

    Article  CAS  PubMed  Google Scholar 

  2. Liu W, Stewart CN Jr (2015) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44. doi:10.1016/j.copbio.2015.10.001

    Article  PubMed  Google Scholar 

  3. Hehl R, Bülow L (2008) Internet resources for gene expression analysis in Arabidopsis thaliana. Curr Genomics 9:375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koschmann J, Machens F, Becker M, Niemeyer J, Schulze J, Bülow L, Stahl DJ, Hehl R (2012) Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiol 160:178–191. doi:10.1104/pp.112.198259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dubos C, Kelemen Z, Sebastian A, Bülow L, Huep G, Xu W, Grain D, Salsac F, Brousse C, Lepiniec L, Weisshaar B, Contreras-Moreira B, Hehl R (2014) Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC Genomics 15(1):317. doi:10.1186/1471-2164-15-317

    Article  PubMed  PubMed Central  Google Scholar 

  6. Redman JC, Haas BJ, Tanimoto G, Town CD (2004) Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J 38(3):545–561. doi:10.1111/j.1365-313X.2004.02061.x

    Article  CAS  PubMed  Google Scholar 

  7. Ma L, Chen C, Liu X, Jiao Y, Su N, Li L, Wang X, Cao M, Sun N, Zhang X, Bao J, Li J, Pedersen S, Bolund L, Zhao H, Yuan L, Wong GK, Wang J, Deng XW, Wang J (2005) A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 15(9):1274–1283. doi:10.1101/gr.3657405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reiser L, Rhee SY (2005) Using the Arabidopsis Information Resource (TAIR) to find information about Arabidopsis genes. Curr Protoc Bioinformatics Chapter 1(1):Unit 1.11

    Google Scholar 

  10. Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32:D575–D577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(Database issue):D991–D995. doi:10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  12. Bülow L, Schindler M, Choi C, Hehl R (2004) PathoPlant: a database on plant-pathogen interactions. In Silico Biol 4:529–536

    PubMed  Google Scholar 

  13. Bülow L, Schindler M, Hehl R (2007) PathoPlant: a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Res 35:D841–D845

    Article  PubMed  Google Scholar 

  14. Hehl R, Bolívar JC, Koschmann J, Brill Y, Bülow L (2013) Databases and web-tools for gene expression analysis in Arabidopsis thaliana. In: Neri C (ed) Advances in genome science: probing intracellular regulation, vol 2. Bentham Science Publishers, Sharjah, UAE, pp 176–193. doi:10.2174/97816080575661130201

    Google Scholar 

  15. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50(2):347–363

    Article  CAS  PubMed  Google Scholar 

  16. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  17. Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81. doi:10.1016/j.pbi.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  18. Korkuc P, Schippers JH, Walther D (2014) Characterization and identification of cis-regulatory elements in Arabidopsis based on single-nucleotide polymorphism information. Plant Physiol 164(1):181–200. doi:10.1104/pp.113.229716

    Article  CAS  PubMed  Google Scholar 

  19. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(Database issue):D1202–D1210. doi:10.1093/nar/gkr1090

    Article  CAS  PubMed  Google Scholar 

  20. Che D, Jensen S, Cai L, Liu JS (2005) BEST: binding-site estimation suite of tools. Bioinformatics 21(12):2909–2911

    Article  CAS  PubMed  Google Scholar 

  21. Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    CAS  PubMed  Google Scholar 

  22. Roth FP, Hughes JD, Estep PW, Church GM (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16(10):939–945

    Article  CAS  PubMed  Google Scholar 

  23. Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8):563–577

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Brutlag DL, Liu JS (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput:127–138

    Google Scholar 

  25. Jensen ST, Liu JS (2004) BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioinformatics 20(10):1557–1564

    Article  CAS  PubMed  Google Scholar 

  26. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20(9):1377–1419. doi:10.1093/molbev/msg140

    Article  CAS  PubMed  Google Scholar 

  27. Kanhere A, Bansal M (2005) Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res 33(10):3165–3175. doi:10.1093/nar/gki627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A 85(19):7089–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35(Web Server issue):W253–W258

    Article  PubMed  PubMed Central  Google Scholar 

  30. Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hehl R, Norval L, Romanov A, Bülow L (2016) Boosting AthaMap Database content with data from protein binding microarrays. Plant Cell Physiol 57(1), e4. doi:10.1093/pcp/pcv156

    Article  PubMed  Google Scholar 

  32. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guiltinan MJ, Marcotte WR Jr, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250(4978):267–271

    Article  CAS  PubMed  Google Scholar 

  34. Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247(4):391–398

    Article  CAS  PubMed  Google Scholar 

  35. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  CAS  PubMed  Google Scholar 

  36. Galuschka C, Schindler M, Bülow L, Hehl R (2007) AthaMap web-tools for the analysis and identification of co-regulated genes. Nucleic Acids Res 35:D857–D862

    Article  CAS  PubMed  Google Scholar 

  37. Bülow L, Engelmann S, Schindler M, Hehl R (2009) AthaMap, integrating transcriptional and post-transcriptional data. Nucleic Acids Res 37(Database issue):D983–D986

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Ministry for Education and Research of Germany (BMBF) through grants 0315037B and 0315459A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Bülow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bülow, L., Hehl, R. (2016). Bioinformatic Identification of Conserved Cis-Sequences in Coregulated Genes. In: Hehl, R. (eds) Plant Synthetic Promoters. Methods in Molecular Biology, vol 1482. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6396-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6396-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6394-2

  • Online ISBN: 978-1-4939-6396-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics