Skip to main content

The Use of Chick Embryos to Study Wnt Activity Gradients

  • Protocol
  • First Online:
Wnt Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1481))

Abstract

The chick spinal cord provides a valuable model for assessing Wnt signaling activity. Loss or gain of function constructs that are transfected by electroporation can be directed to a single side of the spinal cord, thus leaving the contralateral side as an internal control. Here, we describe a method for measuring Wnt signaling via the use of BAT-Gal, a β-catenin dependent Wnt reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205.

    Article  CAS  PubMed  Google Scholar 

  2. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC (2004) Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 297(1):186–196.

    Article  CAS  PubMed  Google Scholar 

  4. Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129(9):2087–2098.

    CAS  PubMed  Google Scholar 

  5. Muroyama Y, Fujihara M, Ikeya M, Kondoh H, Takada S (2002) Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev 16(5):548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galli LM, Barnes TL, Secrest SS, Kadowaki T, Burrus LW (2007) Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development 134(18):3339–3348.

    Article  CAS  PubMed  Google Scholar 

  7. Galli LM, Munji RN, Chapman SC, Easton A, Li L, Onguka O, Ramahi JS, Suriben R, Szabo LA, Teng C, Tran B, Hannoush RN, Burrus LW (2014) Frizzled10 mediates WNT1 and WNT3A signaling in the dorsal spinal cord of the developing chick embryo. Dev Dyn 243(6):833–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galli LM, Szabo LA, Li L, Htaik YM, Onguka O, Burrus LW (2014) Concentration-dependent effects of WNTLESS on WNT1/3A signaling. Dev Dyn 243(9):1095–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miranda M, Galli LM, Enriquez M, Szabo LA, Gao X, Hannoush RN, Burrus LW (2014) Identification of the WNT1 residues required for palmitoylation by Porcupine. FEBS Lett 588(24):4815–4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alvarez-Medina R, Cayuso J, Okubo T, Takada S, Marti E (2008) Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 135(2):237–247.

    Article  CAS  PubMed  Google Scholar 

  11. Galli LM, Barnes T, Cheng T, Acosta L, Anglade A, Willert K, Nusse R, Burrus LW (2006) Differential inhibition of Wnt-3a by Sfrp-1, Sfrp-2, and Sfrp-3. Dev Dyn 235(3):681–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 100(6):3299–3304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brady J (1965) A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull World Health Organ 32(1):143–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229(3):433–439.

    Article  CAS  PubMed  Google Scholar 

  15. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks to Dan Chou for the chick embryo graphics and to Jacquelyn Leiva (SFSU undergraduate student) for taking pictures of electroporated embryos. We would also like to give a tremendous thanks to Dr. Cathy Krull, who is a wonderful colleague and taught us everything that we know about electroporating chick embryos. We are also grateful to Dr. Annette Chan of the SFSU CMIC for her assistance with confocal microscopy. This research was made possible by NSF RUI MCB-1244602, NSF RUI IOS-0950892, NIH 1R15HD070206-01A1, and CSUPERB Grants to Dr. Laura Burrus and a NIH-RIMI (P20MD000262) Grant to San Francisco State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura W. Burrus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Galli, L.M., Barnes, T., Burrus, L.W. (2016). The Use of Chick Embryos to Study Wnt Activity Gradients. In: Barrett, Q., Lum, L. (eds) Wnt Signaling. Methods in Molecular Biology, vol 1481. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6393-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6393-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6391-1

  • Online ISBN: 978-1-4939-6393-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics