Wnt Signaling pp 101-109 | Cite as

Reconstitution of the Cytoplasmic Regulation of the Wnt Signaling Pathway Using Xenopus Egg Extracts

  • Annastasia Simone Hyde
  • Brian I. Hang
  • Ethan LeeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1481)


The regulation of β-catenin turnover is the central mechanism governing activation of the Wnt signaling pathway. All components of the pathway are present in the early embryo of Xenopus laevis, and Xenopus egg extracts have been used to recapitulate complex biological reactions such as microtubule dynamics, DNA replication, chromatin assembly, and phases of the cell cycle. Herein, we describe a biochemical method for analyzing β-catenin degradation using radiolabeled and luciferase-fusion proteins in Xenopus egg extracts. We show that in such a biochemical system, cytoplasmic β-catenin degradation is regulated by soluble components of the Wnt pathway as well as small molecules.

Key words

Xenopus laevis Ubiquitin Proteasome Egg extract Axin β-Catenin destruction complex 



We thank Laurie Lee for critical reading of the manuscript. ASH is supported by a fellowship from the NIH Molecular Endocrinology Training Program. EL is supported by the NIH grants R01GM081635 and R01GM103926.


  1. 1.
    MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E (2013) The way Wnt works: components and mechanism. Growth Factors 31:1–31CrossRefPubMedGoogle Scholar
  3. 3.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170CrossRefPubMedGoogle Scholar
  4. 4.
    Salic A, Lee E, Mayer L, Kirschner MW (2000) Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 5:523–532CrossRefPubMedGoogle Scholar
  5. 5.
    Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (2002) Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci U S A 99:1182–1187CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li X, Yost HJ, Virshup DM, Seeling JM (2001) Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J 20:4122–4131CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee E, Salic A, Kirschner MW (2001) Physiological regulation of [beta]-catenin stability by Tcf3 and CK1epsilon. J Cell Biol 154:983–993CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hang BI, Thorne CA, Robbins DJ, Huppert SS, Lee LA, Lee E (2012) Screening for small molecule inhibitors of embryonic pathways: sometimes you gotta crack a few eggs. Bioorg Med Chem 20:1869–1877CrossRefPubMedGoogle Scholar
  9. 9.
    Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW (2003) The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1:E10CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL, Gingras AC, Zheng N, Maccoss MJ, Angers S, Moon RT (2007) Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316:1043–1046CrossRefPubMedGoogle Scholar
  11. 11.
    Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E (2008) LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc Natl Acad Sci U S A 105:8032–8037CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jernigan KK, Cselenyi CS, Thorne CA, Hanson AJ, Tahinci E, Hajicek N, Oldham WM, Lee LA, Hamm HE, Hepler JR, Kozasa T, Linder ME, Lee E (2010) Gbetagamma activates GSK3 to promote LRP6-mediated beta-catenin transcriptional activity. Sci Signal 3:ra37CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thorne CA, Lafleur B, Lewis M, Hanson AJ, Jernigan KK, Weaver DC, Huppert KA, Chen TW, Wichaidit C, Cselenyi CS, Tahinci E, Meyers KC, Waskow E, Orton D, Salic A, Lee LA, Robbins DJ, Huppert SS, Lee E (2011) A biochemical screen for identification of small-molecule regulators of the Wnt pathway using Xenopus egg extracts. J Biomol Screen 16:995–1006CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Salic A, King RW (2005) Identifying small molecule inhibitors of the ubiquitin-proteasome pathway in Xenopus egg extracts. Methods Enzymol 399:567–585CrossRefPubMedGoogle Scholar
  15. 15.
    Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, Jernigan KK, Meyers KC, Hang BI, Waterson AG, Kim K, Melancon B, Ghidu VP, Sulikowski GA, LaFleur B, Salic A, Lee LA, Miller DM III, Lee E (2010) Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol 6:829–836CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dupre A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee JH, Nicolette ML, Kopelovich L, Jasin M, Baer R, Paull TT, Gautier J (2008) A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat Chem Biol 4:119–125CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Annastasia Simone Hyde
    • 1
  • Brian I. Hang
    • 1
  • Ethan Lee
    • 1
    Email author
  1. 1.Department of Cell and Developmental Biology and Program in Developmental BiologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations