Visualizing Wnt Palmitoylation in Single Cells

  • Xinxin Gao
  • Rami N. HannoushEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1481)


Wnt palmitoylation regulates its secretion and signaling activity in cells. Methods to monitor cellular Wnt palmitoylation are instrumental in investigating Wnt activity, secretion, and its interaction with cellular membrane compartments. This protocol describes a method we have recently developed to detect cellular Wnt palmitoylation. The method, combining click chemistry, bio-orthogonal fatty acid probes, and proximity ligation assay (PLA), provides high sensitivity and subcellular resolution for detection of Wnt palmitoylation. It is also compatible with multiple imaging platforms, and is applicable to detecting palmitoylated forms of other fatty acylated proteins.

Key words

Wnt palmitoylation Alkyne fatty acid Click chemistry Proximity ligation Microscopy 



We acknowledge use of microscopes at the Center for Advanced Light Microscopy (CALM) at Genentech.


  1. 1.
    Hannoush RN, Sun J (2010) The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6:498–506CrossRefPubMedGoogle Scholar
  2. 2.
    Salaun C, Greaves J, Chamberlain LH (2010) The intracellular dynamic of protein palmitoylation. J Cell Biol 191:1229–1238CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gao X, Hannoush RN (2014) Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat Chem Biol 10:61–68CrossRefPubMedGoogle Scholar
  4. 4.
    Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801CrossRefPubMedGoogle Scholar
  5. 5.
    Gao X, Arenas-Ramirez N, Scales SJ, Hannoush RN (2011) Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett 585:2501–2506CrossRefPubMedGoogle Scholar
  6. 6.
    Tang X, Wu Y, Belenkaya TY, Huang Q, Ray L, Qu J, Lin X (2012) Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev Biol 364:32–41CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhai L, Chaturvedi D, Cumberledge S (2004) Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 279:33220–33227CrossRefPubMedGoogle Scholar
  8. 8.
    Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205CrossRefPubMedGoogle Scholar
  9. 9.
    Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51CrossRefPubMedGoogle Scholar
  10. 10.
    Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo G, Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL, Seidel HM, McLaughlin ME, Che J, Carey TE, Vanasse G, Harris JL (2013) Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A 110:20224–20229CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Proffitt KD, Madan B, Ke Z, Pendharkar V, Ding L, Lee MA, Hannoush RN, Virshup DM (2013) Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res 73:502–507CrossRefPubMedGoogle Scholar
  12. 12.
    Doubravska L, Krausova M, Gradl D, Vojtechova M, Tumova L, Lukas J, Valenta T, Pospichalova V, Fafilek B, Plachy J, Sebesta O, Korinek V (2011) Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling. Cell Signal 23:837–848CrossRefPubMedGoogle Scholar
  13. 13.
    Peseckis SM, Deichaite I, Resh MD (1993) Iodinated fatty acids as probes for myristate processing and function. Incorporation into pp60v-src. J Biol Chem 268:5107–5114PubMedGoogle Scholar
  14. 14.
    Schlesinger MJ, Magee AI, Schmidt MF (1980) Fatty acid acylation of proteins in cultured cells. J Biol Chem 255:10021–10024PubMedGoogle Scholar
  15. 15.
    Gao X, Hannoush RN (2014) Method for cellular imaging of palmitoylated proteins with clickable probes and proximity ligation applied to Hedgehog, tubulin and Ras. J Am Chem Soc 136:4544–4550CrossRefPubMedGoogle Scholar
  16. 16.
    Gao X, Hannoush RN (2014) Single-cell in situ imaging of palmitoylation in fatty-acylated proteins. Nat Protoc 9:2607–2623CrossRefPubMedGoogle Scholar
  17. 17.
    Hannoush RN (2011) Development of chemical probes for biochemical detection and cellular imaging of myristoylated and palmitoylated proteins. Curr Protoc Chem Biol 3:15–26PubMedGoogle Scholar
  18. 18.
    Hannoush RN (2012) Profiling cellular myristoylation and palmitoylation using omega-alkynyl fatty acids. Methods Mol Biol 800:85–94CrossRefPubMedGoogle Scholar
  19. 19.
    Hannoush RN, Arenas-Ramirez N (2009) Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem Biol 4:581–587CrossRefPubMedGoogle Scholar
  20. 20.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477CrossRefPubMedGoogle Scholar
  21. 21.
    Gullberg M, Gustafsdottir SM, Schallmeiner E, Jarvius J, Bjarnegard M, Betsholtz C, Landegren U, Fredriksson S (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A 101:8420–8424CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000CrossRefPubMedGoogle Scholar
  23. 23.
    Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125:3192–3193CrossRefPubMedGoogle Scholar
  24. 24.
    Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC (2008) Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 130:11576–11577CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100:9116–9121CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zaro BW, Yang YY, Hang HC, Pratt MR (2011) Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci U S A 108:8146–8151CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang YY, Ascano JM, Hang HC (2010) Bioorthogonal chemical reporters for monitoring protein acetylation. J Am Chem Soc 132:3640–3641CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bothwell IR, Islam K, Chen Y, Zheng W, Blum G, Deng H, Luo M (2012) Se-adenosyl-l-selenomethionine cofactor analogue as a reporter of protein methylation. J Am Chem Soc 134:14905–14912CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Willnow S, Martin M, Luscher B, Weinhold E (2012) A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem 13:1167–1173CrossRefPubMedGoogle Scholar
  30. 30.
    Heal WP, Jovanovic B, Bessin S, Wright MH, Magee AI, Tate EW (2011) Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chem Commun (Camb) 47:4081–4083CrossRefGoogle Scholar
  31. 31.
    Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS (2012) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8:57–64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA

Personalised recommendations