Skip to main content

Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq)

  • Protocol
  • First Online:
Book cover Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1480))

Abstract

3D chromatin organization is essential for many aspects of transcriptional regulation. Circular Chromosome Conformation Capture followed by Illumina sequencing (4C-seq) is among the most powerful techniques to determine 3D chromatin organization. 4C-seq, like other modifications of the original 3C technique, uses the principle of “proximity ligation” to identify and quantify ten thousands of genomic interactions at a kilobase scale in a single experiment for predefined loci in the genome.

In this chapter we focus on the experimental steps in the 4C-seq protocol, providing detailed descriptions on the preparation of cells, the construction of the circularized 3C library and the generation of the Illumina high throughput sequencing library. This protocol is particularly suited for the use of mammalian tissue samples, but can be used with minimal changes on circulating cells and cell lines from other sources as well. In the final section of this chapter, we provide a brief overview of data analysis approaches, accompanied by links to publicly available analysis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502(7472):499–506. doi:10.1038/nature12753

    Article  PubMed  Google Scholar 

  2. Gorkin DU, Leung D, Ren B (2014) The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14(6):762–775. doi:10.1016/j.stem.2014.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465

    Article  CAS  PubMed  Google Scholar 

  4. Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103(28):10684–10689. doi:10.1073/pnas.0600326103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. doi:10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Bluthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385. doi:10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, Hookway TA, Guo C, Sun Y, Bland MJ, Wagstaff W, Dalton S, McDevitt TC, Sen R, Dekker J, Taylor J, Corces VG (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153(6):1281–1295. doi:10.1016/j.cell.2013.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, Baylin SB (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6(12):2911–2927. doi:10.1371/journal.pbio.0060306

    Article  CAS  PubMed  Google Scholar 

  9. Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9(10):1167–1174. doi:10.1038/ncb1637

    Article  CAS  PubMed  Google Scholar 

  10. Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D (2011) The dynamic architecture of Hox gene clusters. Science 334(6053):222–225. doi:10.1126/science.1207194

    Article  CAS  PubMed  Google Scholar 

  11. Noordermeer D, Leleu M, Schorderet P, Joye E, Chabaud F, Duboule D (2014) Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. Elife 3:e02557. doi:10.7554/eLife.02557

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144(2):214–226. doi:10.1016/j.cell.2010.12.026

    Article  CAS  PubMed  Google Scholar 

  13. Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011) Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 7(3):e1001343. doi:10.1371/journal.pgen.1001343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, Pellegrini M, Plath K (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13(5):602–616. doi:10.1016/j.stem.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  15. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. doi:10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  16. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354. doi:10.1038/ng1896

    Article  CAS  PubMed  Google Scholar 

  17. David FP, Delafontaine J, Carat S, Ross FJ, Lefebvre G, Jarosz Y, Sinclair L, Noordermeer D, Rougemont J, Leleu M (2014) HTSstation: a web application and open-access libraries for high-throughput sequencing data analysis. PLoS One 9(1):e85879. doi:10.1371/journal.pone.0085879

    Article  PubMed  PubMed Central  Google Scholar 

  18. van de Werken HJ, Landan G, Holwerda SJ, Hoichman M, Klous P, Chachik R, Splinter E, Valdes-Quezada C, Oz Y, Bouwman BA, Verstegen MJ, de Wit E, Tanay A, de Laat W (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 9(10):969–972. doi:10.1038/nmeth.2173

    Article  PubMed  Google Scholar 

  19. Klein FA, Anders S, Pakozdi T, Ghavi-Helm Y, Furlong EEM, Huber W (2014) FourCSeq: analysis of 4C sequencing data. bioRxiv. doi:10.1101/009548

  20. Thongjuea S, Stadhouders R, Grosveld FG, Soler E, Lenhard B (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res 41(13):e132. doi:10.1093/nar/gkt373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gheldof N, Leleu M, Noordermeer D, Rougemont J, Reymond A (2012) Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C-seq) method. Methods Mol Biol 786:211–225. doi:10.1007/978-1-61779-292-2_13

    Article  CAS  PubMed  Google Scholar 

  22. de Wit E, Braunschweig U, Greil F, Bussemaker HJ, van Steensel B (2008) Global chromatin domain organization of the Drosophila genome. PLoS Genet 4(3):e1000045. doi:10.1371/journal.pgen.1000045

    Article  PubMed  PubMed Central  Google Scholar 

  23. van de Werken HJ, de Vree PJ, Splinter E, Holwerda SJ, Klous P, de Wit E, de Laat W (2012) 4C technology: protocols and data analysis. Methods Enzymol 513:89–112. doi:10.1016/B978-0-12-391938-0.00004-5

    Article  PubMed  Google Scholar 

  24. Kernohan KD, Vernimmen D, Gloor GB, Berube NG (2014) Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping. Nucleic Acids Res 42(13):8356–8368. doi:10.1093/nar/gku564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH, Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S, Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC, Gomez-Skarmeta JL, Nobrega MA (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507(7492):371–375. doi:10.1038/nature13138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woltering JM, Noordermeer D, Leleu M, Duboule D (2014) Conservation and divergence of regulatory strategies at Hox Loci and the origin of tetrapod digits. PLoS Biol 12(1):e1001773. doi:10.1371/journal.pbio.1001773

    Article  PubMed  PubMed Central  Google Scholar 

  27. Simonis M, Kooren J, de Laat W (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4(11):895–901. doi:10.1038/nmeth1114

    Article  CAS  PubMed  Google Scholar 

  28. Bonn S, Zinzen RP, Perez-Gonzalez A, Riddell A, Gavin AC, Furlong EE (2012) Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat Protoc 7(5):978–994. doi:10.1038/nprot.2012.049

    Article  CAS  PubMed  Google Scholar 

  29. Ghavi-Helm Y, Klein FA, Pakozdi T, Ciglar L, Noordermeer D, Huber W, Furlong EE (2014) Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512(7512):96–100. doi:10.1038/nature13417

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Céline Hernandez for comments on the manuscript. Work in the D.N. laboratory is supported by funds from the Fondation pour la Recherche Médicale (FRM—Amorçage de jeunes équipes 2014, grant AJE20140630069), the Biologie Intégrative des Génomes project funded by the Inititiative d’Excellence Paris-Saclay (ANR-11-IDEX-0003-02) and the Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan Noordermeer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matelot, M., Noordermeer, D. (2016). Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq). In: Lanzuolo, C., Bodega, B. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 1480. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6380-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6380-5_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6378-2

  • Online ISBN: 978-1-4939-6380-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics