Skip to main content
Book cover

Drosophila pp 161–176Cite as

Performing Chromophore-Assisted Laser Inactivation in Drosophila Embryos Using GFP

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1478))

Abstract

Chromophore-assisted laser inactivation (CALI) is an optogenetic technique in which light-induced release of reactive oxygen species triggers acute inactivation of a protein of interest, with high spatial and temporal resolution. At its simplest, selective protein inactivation can be achieved via the genetic fusion of the protein to a photosensitizer such as EGFP, and using standard optical setups such as laser scanning confocal microscopes. Although use of CALI in Drosophila is relatively recent, this technique can be a powerful complement to developmental genetics, especially in vivo as it allows visualization of the immediate consequences of local protein inactivation when coupled to time-lapse microscopy analysis. In addition to providing examples of protocols, this chapter is intended as a conceptual framework to support the rational design of CALI experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jay DG (1988) Selective destruction of protein function by chromophore-assisted laser inactivation. Proc Natl Acad Sci U S A 85:5454–5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rajfur Z, Roy P, Otey C, Romer L, Jacobson K (2002) Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol 4:286–293

    Article  CAS  PubMed  Google Scholar 

  3. Monier B, Pélissier-Monier A, Brand AH, Sanson B (2010) An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat Cell Biol 12:60–65, sup pp 61–69

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson K, Rajfur Z, Vitriol E, Hahn K (2008) Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol 18:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Horstkotte E, Schröder T, Niewöhner J, Thiel E, Jay DG, Henning SW (2005) Toward understanding the mechanism of chromophore-assisted laser inactivation--evidence for the primary photochemical steps. Photochem Photobiol 81:358–366

    Article  CAS  PubMed  Google Scholar 

  6. Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770

    Article  CAS  PubMed  Google Scholar 

  7. Rauzi M, Lenne PF (2015) Probing cell mechanics with subcellular laser dissection of actomyosin networks in the early developing Drosophila embryo. Methods Mol Biol 1189:209–218

    Article  CAS  PubMed  Google Scholar 

  8. Pollarolo G, Schulz JG, Munck S, Dotti CG (2011) Cytokinesis remnants define first neuronal asymmetry in vivo. Nat Neurosci 14:1525–1533

    Article  CAS  PubMed  Google Scholar 

  9. Tanabe T, Oyamada M, Fujita K, Dai P, Tanaka H, Takamatsu T (2005) Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nat Methods 2:503–505

    Article  CAS  PubMed  Google Scholar 

  10. Wang FS, Jay DG (1996) Chromophore-assisted laser inactivation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution. Trends Cell Biol 6:442–445

    Article  CAS  PubMed  Google Scholar 

  11. Marek KW, Davis GW (2002) Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36:805–813

    Article  CAS  PubMed  Google Scholar 

  12. Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 21:1505–1508

    Article  CAS  PubMed  Google Scholar 

  13. Kasprowicz J, Kuenen S, Miskiewicz K, Habets RL, Smitz L, Verstreken P (2008) Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J Cell Biol 182:1007–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kasprowicz J, Kuenen S, Swerts J, Miskiewicz K, Verstreken P (2014) Dynamin photoinactivation blocks Clathrin and α-adaptin recruitment and induces bulk membrane retrieval. J Cell Biol 204:1141–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schröder R, Tautz D, Jay DG (1996) Chromophore-assisted laser inactivation of even skipped in Drosophila precisely phenocopies genetic loss of function. Dev Genes Evol 206:86–88

    Article  PubMed  Google Scholar 

  16. Heerssen H, Fetter RD, Davis GW (2008) Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction. Curr Biol 18:401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poskanzer KE, Marek KW, Sweeney ST, Davis GW (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426:559–563

    Article  CAS  PubMed  Google Scholar 

  18. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99

    Article  CAS  PubMed  Google Scholar 

  19. Takemoto K, Matsuda T, Sakai N, Fu D, Noda M, Uchiyama S, Kotera I, Arai Y, Horiuchi M, Fukui K et al (2013) SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci Rep 3:2629

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin JY, Sann SB, Zhou K, Nabavi S, Proulx CD, Malinow R, Jin Y, Tsien RY (2013) Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ou G, Stuurman N, D’Ambrosio M, Vale RD (2010) Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330:677–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffman-Kim D, Diefenbach TJ, Eustace BK, Jay DG (2007) Chromophore-assisted laser inactivation. Methods Cell Biol 82:335–354

    Article  CAS  PubMed  Google Scholar 

  23. Cavey M, Lecuit T (2008) Imaging cellular and molecular dynamics in live embryos using fluorescent proteins. Methods Mol Biol 420:219–238

    Article  CAS  PubMed  Google Scholar 

  24. Vitriol EA, Uetrecht AC, Shen F, Jacobson K, Bear JE (2007) Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc Natl Acad Sci U S A 104:6702–6707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Royou A, Sullivan W, Karess R (2002) Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J Cell Biol 158:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McLean MA, Rajfur Z, Chen Z, Humphrey D, Yang B, Sligar SG, Jacobson K (2009) Mechanism of chromophore assisted laser inactivation employing fluorescent proteins. Anal Chem 81:1755–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sano Y, Watanabe W, Matsunaga S (2014) Chromophore-assisted laser inactivation--towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function. J Cell Sci 127:1621–1629

    Article  CAS  PubMed  Google Scholar 

  28. Venken KJ, Kasprowicz J, Kuenen S, Yan J, Hassan BA, Verstreken P (2008) Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Res 36:e114

    Article  PubMed  PubMed Central  Google Scholar 

  29. Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA et al (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL et al (2015) A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. Elife 4:e08469

    PubMed Central  Google Scholar 

  31. Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314

    Article  CAS  PubMed  Google Scholar 

  32. Hermann A, Liewald JF, Gottschalk A (2015) A photosensitive degron enables acute light-induced protein degradation in the nervous system. Curr Biol 25:R749–R750

    Article  CAS  PubMed  Google Scholar 

  33. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 98:15050–15055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A et al (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175:1505–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quiñones-Coello AT, Petrella LN, Ayers K, Melillo A, Mazzalupo S, Hudson AM, Wang S, Castiblanco C, Buszczak M, Hoskins RA et al (2007) Exploring strategies for protein trapping in Drosophila. Genetics 175:1089–1104

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Andrew Davidson and Will Wood for critical reading of the manuscript. BS acknowledges funding from a Welcome Trust Investigator Award [099234/Z/12/Z]. APM and BM are supported respectively by Université Toulouse III-Paul Sabatier and Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bénédicte Sanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pélissier-Monier, A., Sanson, B., Monier, B. (2016). Performing Chromophore-Assisted Laser Inactivation in Drosophila Embryos Using GFP. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 1478. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6371-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6371-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6369-0

  • Online ISBN: 978-1-4939-6371-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics