Skip to main content

A Guide to Genome-Wide In Vivo RNAi Applications in Drosophila

  • Protocol
  • First Online:
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1478))

Abstract

RNAi technologies enable the testing of gene function in a cell-type- and stage-specific manner in Drosophila. The development of genome-wide RNAi libraries has allowed expansion of this approach to the genome scale and supports identification of most genes required for a given process in a cell type of choice. However, a large-scale RNAi approach also harbors many potential pitfalls that can complicate interpretation of the results. Here, we summarize published screens and provide a guide on how to optimally plan and perform a large-scale, in vivo RNAi screen. We highlight the importance of assay design and give suggestions on how to optimize the assay conditions by testing positive and negative control genes. These genes are used to estimate false-negative and false-positive rates of the screen data. We discuss the planning and logistics of a large-scale screen in detail and suggest bioinformatics platforms to identify and select gene groups of interest for secondary assays. Finally, we review various options to confirm RNAi knock-down specificity and thus identify high confidence genes for more detailed case-by-case studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  2. St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188

    Article  CAS  PubMed  Google Scholar 

  3. Chen D, Ahlford A, Schnorrer F et al (2008) High-resolution, high-throughput SNP mapping in Drosophila melanogaster. Nat Methods 5:323–329

    CAS  PubMed  Google Scholar 

  4. Bellen HJ, Levis RW, He Y et al (2011) The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188:731–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254

    Article  CAS  PubMed  Google Scholar 

  6. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  7. Montgomery MK, Xu S, Fire A (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95:15502–15507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohr S, Bakal C, Perrimon N (2010) Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79:37–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sin O, Michels H, Nollen EAA (2014) Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases. Biochim Biophys Acta 1842:1951–1959

    Article  CAS  PubMed  Google Scholar 

  10. Perrimon N, Ni J-Q, Perkins L (2010) In vivo RNAi: today and tomorrow. Cold Spring Harb Perspect Biol 2:a003640

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566

    Article  CAS  PubMed  Google Scholar 

  12. Ding L, Poser I, Paszkowski-Rogacz M, Buchholz F (2012) From RNAi screens to molecular function in embryonic stem cells. Stem Cell Rev 8:32–42

    Article  CAS  PubMed  Google Scholar 

  13. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  CAS  PubMed  Google Scholar 

  14. Roignant J-Y, Carré C, Mugat B et al (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elliott DA, Brand AH (2008) The GAL4 system : a versatile system for the expression of genes. Methods Mol Biol 420:79–95

    Article  CAS  PubMed  Google Scholar 

  16. Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898

    Article  CAS  PubMed  Google Scholar 

  17. Dietzl G, Chen D, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  18. Ni J-Q, Zhou R, Czech B et al (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8:405–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15:591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mummery-Widmer JL, Yamazaki M, Stoeger T et al (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458:987–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schnorrer F, Schönbauer C, Langer CC et al (2010) Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 464:287–291

    Article  CAS  PubMed  Google Scholar 

  22. Yapici N, Kim Y-J, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:33–37

    Article  PubMed  Google Scholar 

  23. Neely GG, Hess A, Costigan M et al (2010) A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene. Cell 143:628–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neely GG, Kuba K, Cammarato A et al (2010) A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 141:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pospisilik JA, Schramek D, Schnidar H et al (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–160

    Article  CAS  PubMed  Google Scholar 

  26. Cronin SJF, Nehme NT, Limmer S et al (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neumüller RA, Richter C, Fischer A et al (2011) Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8:580–593

    Article  PubMed  PubMed Central  Google Scholar 

  28. Keleman K, Micheler T, VDRC project members (2009) RNAi-phiC31 construct and insertion data submitted by the Vienna Drosophila RNAi Center. Personal communication to Flybase

    Google Scholar 

  29. Gilsdorf M, Horn T, Arziman Z et al (2010) GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Res 38:D448–D452

    Article  CAS  PubMed  Google Scholar 

  30. Horn T, Sandmann T, Boutros M (2010) Design and evaluation of genome-wide libraries for RNA interference screens. Genome Biol 11:R61

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bischof J, Maeda R, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc Natl Acad Sci 104:3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berns N, Woichansky I, Friedrichsen S, Kraft N, Riechmann V (2014) A genome-scale in vivo RNAi analysis of epithelial development in Drosophila identifies new proliferation domains outside of the stem cell niche. J Cell Sci 127:2736–2748

    Article  CAS  PubMed  Google Scholar 

  33. Handler D, Meixner K, Pizka M et al (2013) The genetic makeup of the Drosophila piRNA pathway. Mol Cell 50:762–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Czech B, Preall JB, McGinn J, Hannon GJ (2013) A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 50:749–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Osman D, Gobert V, Ponthan F et al (2009) A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci 106:12043–12048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamamoto-Hino M, Kanie Y, Awano W et al (2010) Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet 6:e1001254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Avet-Rochex A, Boyer K, Polesello C et al (2010) An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis. BMC Dev Biol 10:65

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lesch C, Jo J, Wu Y, Fish GS, Galko MJ (2010) A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes. Genetics 186:943–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Llamusi B, Bargiela A, Fernandez-Costa JM et al (2012) Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis Model Mech 6:184–196

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ni J-Q, Markstein M, Binari R et al (2008) Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 5:49–51

    Article  CAS  PubMed  Google Scholar 

  41. Ni J-Q, Liu L-P, Binari R et al (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto-Hino M, Goto S (2013) In vivo RNAi-based screens: studies in model organisms. Genes (Basel) 4:646–665

    CAS  Google Scholar 

  43. Reim G, Hruzova M, Goetze S, Basler K (2014) Protection of armadillo/β-catenin by armless, a novel positive regulator of wingless signaling. PLoS Biol. doi:10.1371/journal.pbio.1001988.s012

    PubMed  PubMed Central  Google Scholar 

  44. Yan D, Neumüller RA, Buckner M et al (2014) A regulatory network of Drosophila germline stem cell self-renewal. Dev Cell 28:459–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng K, Palfreyman MT, HAsemeyer M, Talsma A, Dickson BJ (2014) Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83:135–148

    Article  CAS  PubMed  Google Scholar 

  46. Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO et al (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512:91–95

    CAS  PubMed  Google Scholar 

  47. Jenett A, Rubin GM, Ngo T-TB et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayashi S, Ito K, Sado Y et al (2002) GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34:58–61

    Article  CAS  PubMed  Google Scholar 

  49. McGuire SE, Mao Z, Davis RL (2004) Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE 2004:l6

    Google Scholar 

  50. Anant S, Roy S, VijayRaghavan K (1998) Twist and Notch negatively regulate adult muscle differentiation in Drosophila. Development 125:1361

    CAS  PubMed  Google Scholar 

  51. Bryantsev AL, Baker PW, Lovato TL, Jaramillo MS, Cripps RM (2012) Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila. Dev Biol 361:191–207

    Article  CAS  PubMed  Google Scholar 

  52. Lee YS, Nakahara K, Pham JW et al (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  CAS  PubMed  Google Scholar 

  53. Fortier E, Belote JM (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26:240–244

    Article  CAS  PubMed  Google Scholar 

  54. Staller MV, Yan D, Randklev S et al (2013) Depleting gene activities in early Drosophila embryos with the ‘maternal-Gal4-shRNA’ system. Genetics 193:51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768

    Article  CAS  PubMed  Google Scholar 

  56. Starz-Gaiano M, Cho NK, Forbes A, Lehmann R (2001) Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development 128:983–991

    CAS  PubMed  Google Scholar 

  57. Schönbauer C, Distler J, Jährling N et al (2011) Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature 479:406–409

    Article  PubMed  Google Scholar 

  58. Sigoillot FD, King RW (2011) Vigilance and validation: keys to success in RNAi screening. ACS Chem Biol 6:47–60

    Article  CAS  PubMed  Google Scholar 

  59. Mohr SE, Perrimon N (2011) RNAi screening: new approaches, understandings, and organisms. Wiley Interdiscip Rev RNA 3:145–158

    Article  PubMed  PubMed Central  Google Scholar 

  60. Echeverri CJ, Beachy PA, Baum B et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779

    Article  CAS  PubMed  Google Scholar 

  61. Kulkarni MM, Booker M, Silver SJ et al (2006) Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods 3:833–838

    CAS  PubMed  Google Scholar 

  62. Ma Y, Creanga A, Lum L, Beachy PA (2006) Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443:359–363

    Article  CAS  PubMed  Google Scholar 

  63. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Surendranath V, Theis M, Habermann BH, Buchholz F (2013) Designing efficient and specific endoribonuclease-prepared siRNAs. Methods Mol Biol 942:193–204

    Article  CAS  PubMed  Google Scholar 

  65. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  CAS  PubMed  Google Scholar 

  66. Khan AA, Betel D, Miller ML et al (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Markstein M, Pitsouli C, Villalta C, Celniker S, Perrimon N (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40:476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 98:15050–15055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clyne PJ, Brotman JS, Sweeney ST, Davis G (2003) Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165:1433–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Buszczak M, Paterno S, Lighthouse D et al (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175:1505–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Quiñones-Coello AT, Petrella LN, Ayers K et al (2007) Exploring strategies for protein trapping in Drosophila. Genetics 175:1089–1104

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lowe N, Rees JS, Roote J et al (2014) Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development 141:3994–4005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Venken KJT, Schulze KL, Haelterman NA et al (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neumuller RA, Wirtz-Peitz F, Lee S et al (2012) Stringent analysis of gene function and protein-protein interactions using fluorescently tagged genes. Genetics 190:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pastor-Pareja JC, Xu T (2011) Shaping cells and organs in Drosophila by opposing roles of fat body-secreted collagen IV and perlecan. Dev Cell 21:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stavropoulos N, Young MW (2011) Insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron 72:964–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim C, Chung BY, Pitman JL et al (2007) Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr Biol 17:1082–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schulz JG, David G, Hassan BA (2009) A novel method for tissue-specific RNAi rescue in Drosophila. Nucleic Acids Res 37:e93

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kondo S, Booker M, Perrimon N (2009) Cross-species RNAi rescue platform in Drosophila melanogaster. Genetics 183:1165–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Langer CCH, Ejsmont RK, Schönbauer C, Schnorrer F, Tomancak P (2010) In vivo RNAi rescue in Drosophila melanogaster with genomic transgenes from Drosophila pseudoobscura. PLoS One 5:e8928

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ejsmont RK, Sarov M, Winkler S, Lipinski KA, Tomancak P (2009) A toolkit for high-throughput, cross-species gene engineering in Drosophila. Nat Methods 6:435–437

    Article  CAS  PubMed  Google Scholar 

  82. Spletter ML, Barz C, Yeroslaviz A et al (2015) The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle. EMBO Rep 16:178–191

    Article  CAS  PubMed  Google Scholar 

  83. Parks A, Cook K, Belvin M et al (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292

    Article  CAS  PubMed  Google Scholar 

  84. Zhang X, Koolhaas WH, Schnorrer F (2014) A versatile two-step CRISPR-and RMCE-based strategy for efficient genome engineering in Drosophila. G3 (Bethesda) 4:2409–2418

    Article  Google Scholar 

  85. Port F, Chen H-M, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci 111:E2967–E2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zambon AC, Gaj S, Ho I et al (2012) GO-Elite: a flexible solution for pathway and ontology over-representation. Bioinformatics 28:2209–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  PubMed  PubMed Central  Google Scholar 

  88. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang DW, Sherman BT, Tan Q et al (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:W169–W175

    Article  PubMed  PubMed Central  Google Scholar 

  90. NCBI Resource Coordinators (2015) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 43:D6–D17

    Article  Google Scholar 

  91. Vinayagam A, Hu Y, Kulkarni M et al (2013) Protein complex-based analysis framework for high-throughput data sets. Sci Signal 6:rs5

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schmidt EE, Pelz O, Buhlmann S, Kerr G, Horn T, Boutros M (2013) GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res 41:D1021–D1026

    Article  CAS  PubMed  Google Scholar 

  93. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu J, Pacifico S, Liu G, Finley RL (2008) DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 9:461

    Article  PubMed  PubMed Central  Google Scholar 

  95. Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang J, Zhong J, Chen G et al (2015) ClusterViz: a Cytoscape APP for clustering analysis of biological network. IEEE/ACM Trans Comput Biol Bioinform 12(4):815–822

    Article  PubMed  Google Scholar 

  98. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  99. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  PubMed  Google Scholar 

  101. Green EW, Fedele G, Giorgini F, Kyriacou CP (2014) A Drosophila RNAi collection is subject to dominant phenotypic effects. Nat Methods 11:222–223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Reinhard Fässler for generous support, Bianca Habermann for help with the bioinformatics section, and Maria Spletter and the entire Schnorrer lab for informative suggestions on this manuscript. Our laboratory is supported by the Max Planck Society, Humboldt Foundation and EMBO postdoctoral fellowships (A.K.-Ç.), the EMBO Young Investigator Program (F.S.) and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant 310939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schnorrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kaya-Çopur, A., Schnorrer, F. (2016). A Guide to Genome-Wide In Vivo RNAi Applications in Drosophila . In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 1478. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6371-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6371-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6369-0

  • Online ISBN: 978-1-4939-6371-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics