Skip to main content
Book cover

Drosophila pp 215–226Cite as

Cultivation and Live Imaging of Drosophila Ovaries

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1478))

Abstract

Drosophila egg chamber development depends on a number of dynamic cellular processes that contribute to the final shape and function of the egg. We can gain insight into the mechanisms underlying these events by combining the power of Drosophila genetics and ex vivo live imaging. During developmental stages 1–8, egg chambers rotate around their anterior-posterior axes due to collective migration of the follicular epithelium. This motion is required for the proper elongation of the egg chamber. Here, we describe how to prepare stage 1–8 egg chambers for live imaging. We provide alternate protocols for the use of inverted or upright microscopes and describe ways to stabilize egg chambers to reduce drift during imaging. We discuss the advantages and limitations of these methods to assist the researcher in choosing an appropriate method based on experimental need and available resources.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232(3):559–574

    Article  CAS  PubMed  Google Scholar 

  2. Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19(3):271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21(5):612–619

    Article  CAS  PubMed  Google Scholar 

  4. Dorman JB, James KE, Fraser SE et al (2004) bullwinkle is required for epithelial morphogenesis during Drosophila oogenesis. Dev Biol 267(2):320–341

    Article  CAS  PubMed  Google Scholar 

  5. Gutzeit H, Koppa R (1982) Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila. J Embryol Exp Morph 67:101–111

    Google Scholar 

  6. Huelsmann S, Ylanne J, Brown NH (2013) Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells. Dev Cell 26(6):604–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Osterfield M, Du X, Schupbach T et al (2013) Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 24(4):400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petri WH, Mindrinos MN, Lombard MF et al (1979) In vitro development of the Drosophila chorion in a chemically defined organ culture medium. Dev Genes Evol 186:351–362

    Google Scholar 

  9. Spracklen AJ, Fagan TN, Lovander KE et al (2014) The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev Biol 393(2):209–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spracklen AJ, Tootle TL (2013) The utility of stage-specific mid-to-late Drosophila follicle isolation. J Vis Exp 82:50493

    Google Scholar 

  11. Prasad M, Jang AC, Starz-Gaiano M et al (2007) A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2(10):2467–2473

    Article  CAS  PubMed  Google Scholar 

  12. Bianco A, Poukkula M, Cliffe A et al (2007) Two distinct modes of guidance signalling during collective migration of border cells. Nature 448(7151):362–365

    Article  CAS  PubMed  Google Scholar 

  13. Prasad M, Montell DJ (2007) Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12(6):997–1005

    Article  CAS  PubMed  Google Scholar 

  14. He L, Wang X, Tang HL et al (2010) Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat Cell Biol 12(12):1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cetera M, Ramirez-San Juan GR, Oakes PW et al (2014) Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 5:5511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331(6020):1071–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Airoldi SJ, McLean PF, Shimada Y et al (2011) Intercellular protein movement in syncytial Drosophila follicle cells. J Cell Sci 124(Pt 23):4077–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lerner DW, McCoy D, Isabella AJ et al (2013) A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev Cell 24(2):159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bilder D, Haigo SL (2012) Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev Cell 22(1):12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gates J (2012) Drosophila egg chamber elongation: insights into how tissues and organs are shaped. Fly (Austin) 6(4):213–227

    Article  CAS  Google Scholar 

  21. Horne-Badovinac S (2014) The Drosophila egg chamber-a new spin on how tissues elongate. Integr Comp Biol 54(4):667–676

    Article  PubMed  PubMed Central  Google Scholar 

  22. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53(1):186–196

    Article  CAS  PubMed  Google Scholar 

  23. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161

    Article  CAS  PubMed  Google Scholar 

  24. Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods 68(1):207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewellyn L, Cetera M, Horne-Badovinac S (2013) Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila. J Cell Biol 200(6):721–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Viktorinova I, Dahmann C (2013) Microtubule polarity predicts direction of egg chamber rotation in Drosophila. Curr Biol 23(15):1472–1477

    Article  CAS  PubMed  Google Scholar 

  27. Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231(1):265–278

    Article  CAS  PubMed  Google Scholar 

  28. Mazzalupo S, Cooley L (2006) Illuminating the role of caspases during Drosophila oogenesis. Cell Death Differ 13(11):1950–1959

    Article  CAS  PubMed  Google Scholar 

  29. Pritchett TL, Tanner EA, McCall K (2009) Cracking open cell death in the Drosophila ovary. Apoptosis 14(8):969–979

    Article  PubMed  PubMed Central  Google Scholar 

  30. Robin FB, McFadden WM, Yao B et al (2014) Single-molecule analysis of cell surface dynamics in Caenorhabditis elegans embryos. Nat Methods 11(6):677–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Horne-Badovinac lab for input, Guillermina Ramirez-San Juan for the dissection video, and Claire Stevenson for the images in Fig. 1c. M.C. was supported by NIH T32 GM007183 and work in the Horne-Badovinac lab is supported by NIH R01 GM094276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Horne-Badovinac .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Drosophila ovary dissection. Video showing dissection of Drosophila ovaries using a stereomicroscope. Alternate dissection methods are shown for acquiring stage 6-8 or stage 1-5 egg chambers. After dissection, healthy ovarioles are sorted and older egg chambers are trimmed away. Please see Fig. 2 for stills of this video and a detailed procedural description.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cetera, M., Lewellyn, L., Horne-Badovinac, S. (2016). Cultivation and Live Imaging of Drosophila Ovaries. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 1478. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6371-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6371-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6369-0

  • Online ISBN: 978-1-4939-6371-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics