Skip to main content

Polymeric Materials for Cell Microencapsulation

  • Protocol
  • First Online:
Cell Microencapsulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1479))

Abstract

Mammalian cells have been microencapsulated within both natural and synthetic polymers for over half a century. Specifically, in the last 36 years microencapsulated cells have been used therapeutically to deliver a wide range of drugs, cytokines, growth factors, and hormones while enjoying the immunoisolation provided by the encapsulating material. In addition to preventing immune attack, microencapsulation prevents migration of entrapped cells. Cells can be microencapsulated in a variety of geometries, the most common being solid microspheres and hollow microcapsules. The micrometer scale permits delivery by injection and is within diffusion limits that allow the cells to provide the necessary factors that are missing at a target site, while also permitting the exchange of nutrients and waste products. The majority of cell microencapsulation is performed with alginate/poly-l-lysine microspheres. Since alginate itself can be immunogenic, for cell-based therapy applications various groups are investigating synthetic polymers to microencapsulate cells. We describe a protocol for the formation of microspheres and microcapsules using the synthetic polymer poly(ethylene glycol) diacrylate (PEGDA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang JJ (2013) Mechanisms of cell therapy for clinical investigations: an urgent need for large-animal models. Circulation 128:92–94

    Article  Google Scholar 

  2. Kim JK et al (2010) Autologous bone marrow infusion activates the progenitor cell compartment in patients with advanced liver cirrhosis. Cell Transplant 19:1237–1246

    Article  Google Scholar 

  3. Camussi G, Dereqibus MC, Tetta C (2010) Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 19(1):7–12

    Article  CAS  Google Scholar 

  4. Abumaree M, Al Jumah M, Pace RA, Kalionis B (2012) Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev 8(2):375–392

    Article  CAS  Google Scholar 

  5. Moutsatsos IK et al (2001) Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 3:449–461

    Article  CAS  Google Scholar 

  6. Goren A, Dahan N, Goren E et al (2010) Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J 24(1):22–31

    Article  Google Scholar 

  7. Ausländer S, Wieland M, Fussenegger M (2012) Smart medication through combination of synthetic biology and cell microencapsulation. Metab Eng 14(3):252–260

    Article  Google Scholar 

  8. Tomaro-Duchesneau C, Saha S, Malhotra M et al (2013) Microencapsulation for the therapeutic delivery of drugs, live mammalian and bacterial cells, and other biopharmaceutics: current status and future directions. J Pharm 2013:103527

    Google Scholar 

  9. Teramura Y, Minh LN, Kawamoto T, Hiroo Iwata H (2010) Microencapsulation of islets with living cells using PolyDNA-PEG-lipid conjugate. Bioconjugate Chem 21(4):792–796

    Article  CAS  Google Scholar 

  10. Olabisi RM, Lazard ZW, Franco CL et al (2010) Hydrogel microsphere encapsulation of a cell-based gene therapy system increases cell survival of injected cells, transgene expression, and bone volume in a model of heterotopic ossification. Tissue Eng Part A 16(12):3727–3736

    Article  CAS  Google Scholar 

  11. Afkhami F, Yves Durocher Y, Satya Prakash S (2010) Investigation of antiangiogenic tumor therapy potential of microencapsulated HEK293 VEGF165b producing cells. J Biomed Biotechnol 2010:645610

    Article  Google Scholar 

  12. Chang TMS, Macintosh FC, Mason SG (1966) Semipermeable aqueous microcapsules: I. Preparation and properties. Can J Physiol Pharmacol 44:115–128

    Article  CAS  Google Scholar 

  13. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  CAS  Google Scholar 

  14. Olabisi RM (2015) Cell microencapsulation with synthetic polymers. Tissue Eng Pt A 103:846–859

    Google Scholar 

  15. Hong JS, Shin SJ, Lee S, Wong E et al (2007) Spherical and cylindrical microencapsulation of living cells using microfluidic devices. Korea Aust Rheol J 19(3):157–164

    Google Scholar 

  16. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6):733–742

    Article  CAS  Google Scholar 

  17. Liu L, Shujun Gao S, Yu Y et al (2006) Bio-ceramic hollow fiber membranes for immunoisolation and gene delivery: I: membrane development. J Membrane Sci 280:375–382

    Article  CAS  Google Scholar 

  18. Baker J. A phase I/IIa open-label investigation of the safety and effectiveness of DIABECELL(R) [immunoprotected (alginate-encapsulated) porcine islets for Xenotransplantation] in patients with type I diabetes mellitus (study NCT00940173). Available at: http://www.clinicaltrials.gov. Accessed 18 Sept 2015

  19. Dufrane D. A monocentre phase 1 trial to assess a monolayer cellular device in the treatment of type 1 diabetes (study NCT00790257). Available at: http://www.clinicaltrials.gov. Accessed 18 Sept 2015

  20. Keymeulen B. Functional survival of beta cell allografts after transplantation in the peritoneal cavity of non-uremic type 1 diabetic patients (study NCT01379729). Available at: http://www.clinicaltrials.gov. Accessed 18 Sept 2015

  21. Schwartz S, Mulgrew P. A single-center phase I/II study of PEG-encapsulated islet allografts implanted in patients with type I diabetes (study NCT00260234). Available at: http://www.clinicaltrials.gov. Accessed 18 Sept 2015

  22. Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72

    Article  CAS  Google Scholar 

  23. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  Google Scholar 

  24. Aijaz A, Faulknor R, Berthiaume F, Olabisi RM (2015) Hydrogel microencapsulated insulin-secreting cells increase keratinocyte migration, epidermal thickness, collagen fiber density, and wound closure in a diabetic mouse model of wound healing. Tissue Eng Part A. doi:10.1089/ten.TEA.2015.0069

    Google Scholar 

  25. Franco CL, Price J, West JL (2011) Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater 7(9):3267–3276

    Article  CAS  Google Scholar 

  26. Mumaw J, Jordan ET, Sonnet C et al (2012) Rapid heterotrophic ossification with cryopreserved poly(ethylene glycol-) microencapsulated BMP2-expressing MSCs. Int J Biomater 2012:861794

    Article  Google Scholar 

  27. Sonnet C, Simpson CL, Olabisi RM et al (2013) Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res 31(10):1597–1604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronke M. Olabisi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aijaz, A., Perera, D., Olabisi, R.M. (2017). Polymeric Materials for Cell Microencapsulation. In: Opara, E. (eds) Cell Microencapsulation. Methods in Molecular Biology, vol 1479. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6364-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6364-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6362-1

  • Online ISBN: 978-1-4939-6364-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics