Skip to main content

Field Effect Microparticle Generation for Cell Microencapsulation

  • Protocol
  • First Online:
Cell Microencapsulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1479))

Abstract

The diameter and sphericity of alginate-poly-l-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  CAS  Google Scholar 

  2. Sun AM, Vacek I, Sun YL, Ma X, Zhou D (1992) In vitro and in vivo evaluation of microencapsulated porcine islets. ASAIO J 38:125–127

    Google Scholar 

  3. Soon-Shiong P, Feldman E, Nelson R, Komtebedde J, Smidsrod O, Skjak-Braek G, Espevik T, Heintz R, Lee M (1992) Successful reversal of spontaneous diabetes in dogs by intraperitoneal microencapsulated islets. Transplantation 54:769–774

    Article  CAS  Google Scholar 

  4. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M, Mendez R, Sandford PA (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951

    Article  CAS  Google Scholar 

  5. Fu XW, Sun AM (1989) Microencapsulated parathyroid cells as a bioartificial parathyroid. Transplantation 47:432–435

    Article  CAS  Google Scholar 

  6. Cai Z, Shi ZQ, Sherman M, Sun AM (1989) Development and evaluation of a system of microencapsulation of primary rat hepatocytes. Hepatology 10:855–860

    Article  CAS  Google Scholar 

  7. Sun AM, Cai Z, Shi Z, Ma F, O’Shea GM (1987) Microencapsulated hepatocytes: an in vitro and in vivo study. Biomater Artif Cells Artif Organs 15:483–496

    Article  CAS  Google Scholar 

  8. Zhang Y, Chen XM, Sun DL (2014) Effects of coencapsulation of hepatocytes with adipose-derived stem cells in the treatment of rats with acute-on-chronic liver failure. Int J Artif Organs 37:133–141

    Article  Google Scholar 

  9. Aebischer P, Tresco PA, Sagen J, Winn SR (1991) Transplantation of microencapsulated bovine chromattin cells reduces lesion-induced rotational asymmetry in rats. Brain Res 560:43–49

    Article  CAS  Google Scholar 

  10. Goren A, Gilert A, Meyron-Holtz E, Melamed D, Machluf M (2012) Alginate encapsulated cells secreting Fas-ligand reduce lymphoma carcinogenicity. Cancer Sci 103:116–124

    Article  CAS  Google Scholar 

  11. Rodes L, Tomaro-Duchesneau C, Saha S, Paul A, Malhotra M, Marinescu D, Shao W, Kahouli I, Prakash S (2014) Enrichment of Bifidobacterium longum subsp. infantis ATCC 15697 within the human gut microbiota using alginate-poly-L-lysine-alginate microencapsulation oral delivery system: an in vitro analysis using a computer-controlled dynamic human gastrointestinal model. J Microencapsul 31:230–238

    Article  CAS  Google Scholar 

  12. Darquy S, Reach G (1985) Immunoisolation of pancreatic B cells by microencapsulation. An in vitro study. Diabetologia 28:776–780

    Google Scholar 

  13. Lanza RP, Sullivan SJ, Chick WL (1992) Islet transplantation with immunoisolation. Diabetes 41:1503–1510

    Article  CAS  Google Scholar 

  14. Arshady R (1989) Preparation of microspheres and microcapsules by interfacial polycondensation techniques. J Microencapsul 6:13–28

    Article  CAS  Google Scholar 

  15. Fritschy WM, Woltens GHJ, Schilfgaarde RV (1991) Effect of alginage-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 40:37–43

    Article  CAS  Google Scholar 

  16. Strand BL, Gåserød O, Kulseng B, Espevik T, Skjåk-Baek G (2002) Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. J Microencapsul 19:615–630

    Article  CAS  Google Scholar 

  17. Huang X, Zhang X, Wang X, Wang C, Tang B (2012) Microenvironment of alginate-based microcapsules for cell culture and tissue engineering. J Biosci Bioeng 114:1–8

    Article  CAS  Google Scholar 

  18. Chicheportiche D, Reach G (1988) In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules. Diabetologia 31:54–57

    CAS  Google Scholar 

  19. Robitaille R, Pariseau JF, Leblond F, Lamoureux M, Lepage Y, Halle JP (1999) Studies on small (<350 μm) alginate-poly-l-lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J Biomed Mater Res 44:116–120

    Article  CAS  Google Scholar 

  20. Goosen MFA, Al-Ghafri AS, ElMardi O, Al-Belushi MIJ, Al-Hajri HA, Mahmoud ESE, Consolacion EC (1997) Electrostatic droplet generation for encapsulation of somatic tissue: assesment of high-voltage power supply. Biotechnol Prog 13:497–502

    Article  CAS  Google Scholar 

  21. Halle JP, Leblond FA, Pariseau JF, Jutras P, Brabant MJ, Lepage Y (1994) Studies on small (<300 μm) microcapsules: II-parameters governing the production of alginate beads by high voltage electrostatic pulses. Cell Transplant 3:365–372

    CAS  Google Scholar 

  22. Lacy PE, Kostianovsky M (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35–39

    Article  CAS  Google Scholar 

  23. O’Shea GM, Sun AM (1986) Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice. Diabetes 35:943–946

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brend Ray-Sea Hsu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hsu, B.RS., Fu, SH. (2017). Field Effect Microparticle Generation for Cell Microencapsulation. In: Opara, E. (eds) Cell Microencapsulation. Methods in Molecular Biology, vol 1479. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6364-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6364-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6362-1

  • Online ISBN: 978-1-4939-6364-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics