Skip to main content

Use of mCherryOpt Fluorescent Protein in Clostridium difficile

  • Protocol
  • First Online:
Clostridium difficile

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1476))

Abstract

Here we describe protocols for using the red fluorescent protein mCherryOpt in Clostridium difficile. The protocols can be readily adapted to similar fluorescent proteins (FPs), such as green fluorescent protein (GFP) and cyan fluorescent protein (CFP). There are three critical considerations for using FPs in C. difficile. (1) Choosing the right color: Blue and (especially) red are preferred because C. difficile exhibits considerable yellow-green autofluorescence. (2) Codon optimization: Most FP genes in general circulation have a GC content of ~60 %, so they are not well expressed in low-GC bacteria. (3) Fixing anaerobically grown cells prior to exposure to O2: The FPs under consideration here are non-fluorescent when produced anaerobically because O2 is required to introduce double bonds into the chromophore. Fixation prevents C. difficile cells from becoming degraded during the several hours required for chromophore maturation after cells are exposed to air. Fixation can probably be omitted for studies in which maintaining cellular architecture is not important, such as using mCherryOpt to monitor gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi:10.1146/annurev.biochem.67.1.509

    Article  CAS  PubMed  Google Scholar 

  2. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. doi:10.1038/nmeth819

    Article  CAS  PubMed  Google Scholar 

  3. Remington SJ (2011) Green fluorescent protein: a perspective. Protein Sci 20(9):1509–1519. doi:10.1002/pro.684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Margolin W (2012) The price of tags in protein localization studies. J Bacteriol 194(23):6369–6371. doi:10.1128/JB.01640-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91(26):12501–12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buckley AM, Petersen J, Roe AJ, Douce GR, Christie JM (2015) LOV-based reporters for fluorescence imaging. Curr Opin Chem Biol 27:39–45. doi:10.1016/j.cbpa.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  7. Drepper T, Huber R, Heck A, Circolone F, Hillmer AK, Buchs J, Jaeger KE (2010) Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters. Appl Environ Microbiol 76(17):5990–5994. doi:10.1128/AEM.00701-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ransom EM, Ellermeier CD, Weiss DS (2015) Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile. Appl Environ Microbiol 81(5):1652–1660. doi:10.1128/AEM.03446-14

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Xing XH, Lou K (2005) Rapid detection of a gfp-marked Enterobacter aerogenes under anaerobic conditions by aerobic fluorescence recovery. FEMS Microbiol Lett 249(2):211–218. doi:10.1016/j.femsle.2005.05.051

    Article  CAS  PubMed  Google Scholar 

  10. Ransom EM, Williams KB, Weiss DS, Ellermeier CD (2014) Identification and characterization of a gene cluster required for proper rod shape, cell division, and pathogenesis in Clostridium difficile. J Bacteriol 196(12):2290–2300. doi:10.1128/JB.00038-14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sastalla I, Chim K, Cheung GY, Pomerantsev AP, Leppla SH (2009) Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria. Appl Environ Microbiol 75(7):2099–2110. doi:10.1128/AEM.02066-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fagan RP, Fairweather NF (2011) Clostridium difficile has two parallel and essential Sec secretion systems. J Biol Chem 286(31):27483–27493. doi:10.1074/jbc.M111.263889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trieu-Cuot P, Arthur M, Courvalin P (1987) Origin, evolution and dissemination of antibiotic resistance genes. Microbiol Sci 4(9):263–266

    CAS  PubMed  Google Scholar 

  14. Ausubel FM (2002) Short protocols in molecular biology: a compendium of methods from Current protocols in molecular biology, 5th edn. Wiley, New York

    Google Scholar 

  15. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37(20):6984–6990. doi:10.1093/nar/gkp687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78(1):79–85. doi:10.1016/j.mimet.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  17. Barra-Carrasco J, Olguin-Araneda V, Plaza-Garrido A, Miranda-Cardenas C, Cofre-Araneda G, Pizarro-Guajardo M, Sarker MR, Paredes-Sabja D (2013) The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 195(17):3863–3875. doi:10.1128/JB.00369-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira FC, Saujet L, Tome AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO (2013) The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 9(10):e1003782. doi:10.1371/journal.pgen.1003782

    Article  PubMed  PubMed Central  Google Scholar 

  19. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60(5):523–533. doi:10.1007/s00253-002-1158-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work described in this chapter was funded by National Institutes of Health grants GM-083975 to D.S.W., AI-087834 to C.D.E., and the Department of Microbiology at The University of Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Ellermeier Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ransom, E.M., Weiss, D.S., Ellermeier, C.D. (2016). Use of mCherryOpt Fluorescent Protein in Clostridium difficile . In: Roberts, A., Mullany, P. (eds) Clostridium difficile. Methods in Molecular Biology, vol 1476. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6361-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6361-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6359-1

  • Online ISBN: 978-1-4939-6361-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics