Skip to main content

Inducing and Quantifying Clostridium difficile Spore Formation

  • Protocol
  • First Online:
Book cover Clostridium difficile

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1476))

Abstract

The Gram-positive nosocomial pathogen Clostridium difficile induces sporulation during growth in the gastrointestinal tract. Sporulation is necessary for this obligate anaerobe to form metabolically dormant spores that can resist antibiotic treatment, survive exit from the mammalian host, and transmit C. difficile infections. In this chapter, we describe a method for inducing C. difficile sporulation in vitro. This method can be used to study sporulation and maximize spore purification yields for a number of C. difficile strain backgrounds. We also describe procedures for visualizing spore formation using phase-contrast microscopy and for quantifying the efficiency of sporulation using heat resistance as a measure of functional spore formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rupnik M, Wilcox M, Gerding D (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7(7):526–536. doi:10.1038/nrmicro2164

    Google Scholar 

  2. Paredes-Sabja D, Shen A, Sorg JA (2014) Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol. doi:10.1016/j.tim.2014.04.003

    PubMed  PubMed Central  Google Scholar 

  3. Jump RL, Pultz MJ, Donskey CJ (2007) Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrob Agents Chemother 51(8):2883–2887. doi:10.1128/AAC.01443-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD (2012) The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 80(8):2704–2711. doi:10.1128/IAI.00147-12, IAI.00147-12 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Putnam EE, Nock AM, Lawley TD, Shen A (2013) SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 195(6):1214–1225. doi:10.1128/JB.02181-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A (2013) Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 9(8):e1003660. doi:10.1371/journal.pgen.1003660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorg JA, Sonenshein AL (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190(7):2505–2512. doi:10.1128/JB.01765-07, JB.01765-07 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pereira FC, Saujet L, Tome AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO (2013) The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 9(10):e1003782. doi:10.1371/journal.pgen.1003782

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I (2013) Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 9(10):e1003756. doi:10.1371/journal.pgen.1003756

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adams C, Eckenroth B, Putnam E, Doublie S, Shen A (2013) Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 9(2):e1003165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Francis MB, Allen CA, Shrestha R, Sorg JA (2013) Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9(5):e1003356. doi:10.1371/journal.ppat.1003356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edwards AN, Nawrocki KL, McBride SM (2014) Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 82(10):4276–4291. doi:10.1128/IAI.02323-14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M, Lawley TD, Fairweather NF, Fagan RP (2015) High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. mBio 6(2):e02383. doi:10.1128/mBio.02383-14

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL (2007) Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66(1):206–219. doi:10.1111/j.1365-2958.2007.05906.x, MMI5906 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Sebaihia M, Wren B, Mullany P, Fairweather N, Minton N, Stabler R, Thomson N, Roberts A, Cerdeño-Târraga A, Wang H, Holden M, Wright A, Churcher C, Quail M, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38(7):779–786. doi:10.1038/ng1830

    Article  PubMed  Google Scholar 

  16. Wang S, Shen A, Setlow P, Li YQ (2015) Characterization of the dynamic germination of individual Clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy. J Bacteriol 197(14):2361–2373. doi:10.1128/JB.00200-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He M, Sebaihia M, Lawley T, Stabler R, Dawson L, Martin M, Holt K, Seth-Smith H, Quail M, Rance R, Brooks K, Churcher C, Harris D, Bentley S, Burrows C, Clark L, Corton C, Murray V, Rose G, Thurston S, van Tonder A, Walker D, Wren B, Dougan G, Parkhill J (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107(16):7527–7532. doi:10.1073/pnas.0914322107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawley T, Clare S, Walker A, Goulding D, Stabler R, Croucher N, Mastroeni P, Scott P, Raisen C, Mottram L, Fairweather N, Wren B, Parkhill J, Dougan G (2009) Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 77(9):3661–3669. doi:10.1128/iai.00558-09

    Google Scholar 

  19. Heap J, Kuehne S, Ehsaan M, Cartman S, Cooksley C, Scott J, Minton N (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80(1):49–55. doi:10.1016/j.mimet.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  20. van Eijk E, Anvar SY, Browne HP, Leung WY, Frank J, Schmitz AM, Roberts AP, Smits WK (2015) Complete genome sequence of the Clostridium difficile laboratory strain 630Deltaerm reveals differences from strain 630, including translocation of the mobile element CTn5. BMC Genomics 16:31. doi:10.1186/s12864-015-1252-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stabler R, He M, Dawson L, Martin M, Valiente E, Corton C, Lawley T, Sebaihia M, Quail M, Rose G, Gerding D, Gibert M, Popoff M, Parkhill J, Dougan G, Wren B (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10(9):R102. doi:10.1186/gb-2009-10-9-r102

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sorg JA, Dineen SS (2009) Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol Chapter 9:Unit 9A 1. doi:10.1002/9780471729259.mc09a01s12

  23. Burns DA, Minton NP (2011) Sporulation studies in Clostridium difficile. J Microbiol Methods 87(2):133–138. doi:10.1016/j.mimet.2011.07.017

    Article  PubMed  Google Scholar 

  24. Kevorkian Y, Shirley DJ, Shen A (2015) Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie. doi:10.1016/j.biochi.2015.07.023

    PubMed  Google Scholar 

  25. Pishdadian K, Fimlaid KA, Shen A (2015) SpoIIID-mediated regulation of sigma(K) function during Clostridium difficile sporulation. Mol Microbiol 95(2):189–208. doi:10.1111/mmi.12856

    Article  CAS  PubMed  Google Scholar 

  26. Permpoonpattana P, Tolls E, Nadem R, Tan S, Brisson A, Cutting S (2011) Surface layers of Clostridium difficile endospores. J Bacteriol 193(23):6461–6470. doi:10.1128/jb.05182-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phetcharaburanin J, Hong HA, Colenutt C, Bianconi I, Sempere L, Permpoonpattana P, Smith K, Dembek M, Tan S, Brisson MC, Brisson AR, Fairweather NF, Cutting SM (2014) The spore-associated protein BclA1 affects the susceptibility of animals to colonization and infection by Clostridium difficile. Mol Microbiol 92(5):1025–1038. doi:10.1111/mmi.12611

    Article  CAS  PubMed  Google Scholar 

  28. Ng YK, Ehsaan M, Philip S, Collery MM, Janoir C, Collignon A, Cartman ST, Minton NP (2013) Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One 8(2):e56051. doi:10.1371/journal.pone.0056051

    Google Scholar 

Download references

Acknowledgments

K.F. is supported by T32 AI055402 from the National Institute of Allergy and Infectious Disease. A.S. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts; work in this manuscript was supported by start-up funds from Award Number P20 GM103496 and R01GM108684 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily reflect the views of the Pew Charitable Trusts, the National Institute of Allergy and Infectious Disease, the National Institute of General Medical Sciences, or the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shen, A., Fimlaid, K.A., Pishdadian, K. (2016). Inducing and Quantifying Clostridium difficile Spore Formation. In: Roberts, A., Mullany, P. (eds) Clostridium difficile. Methods in Molecular Biology, vol 1476. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6361-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6361-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6359-1

  • Online ISBN: 978-1-4939-6361-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics