Skip to main content
Book cover

SUMO pp 109–121Cite as

Using Biotinylated SUMO-Traps to Analyze SUMOylated Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1475))

Abstract

SUMO-interacting motifs (SIMs) recognize SUMOylated proteins with high specificity allowing to connect SUMO-modified proteins. Multiple SIMs fused to distinct tags have been used to increase their affinity and generate more efficient purification tools. Enrichment of SUMOylated proteins using SIMs arranged in tandem (SUMO-traps) facilitates the identification and characterization of protein targets in vitro and in vivo. Here a protocol to produce biotinylated SUMO-traps (bioSUBEs) to capture SUMO chains and typical SUMOylated proteins such as p53 or IkBα is presented. Biotinylated SUMO-traps represent an alternative to reduce the background associated to bigger tags, e.g., during mass spectrometry analysis. Consequently, bioSUBEs are alternative tools to characterize endogenous SUMO targets.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Garcia-Dominguez M, Reyes JC (2009) SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim Biophys Acta 1789:451–459. doi:10.1016/j.bbagrm.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  2. Sarge KD, Park-Sarge O-K (2011) Chapter four—SUMO and its role in human diseases. In: Biology KWJBT-IR of C and M (ed). Academic. pp 167–183

    Google Scholar 

  3. Mahajan R, Delphin C, Guan T et al (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    Article  CAS  PubMed  Google Scholar 

  4. Sarge KD, Park-Sarge O-K (2011) SUMO and its role in human diseases. Int Rev Cell Mol Biol 288:167–183. doi:10.1016/B978-0-12-386041-5.00004-2

    Article  CAS  PubMed  Google Scholar 

  5. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956. doi:10.1038/nrm2293

    Article  CAS  PubMed  Google Scholar 

  6. Girdwood DW, Tatham MH, Hay RT (2004) SUMO and transcriptional regulation. Semin Cell Dev Biol 15:201–210. doi:10.1016/j.semcdb.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Častorálová M, Březinová D, Švéda M, et al (2012) SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis. Biochim Biophys Acta Mol Cell Res 1823:911–919. doi:http://dx.doi.org/10.1016/j.bbamcr.2012.01.010

    Google Scholar 

  8. Manza LL, Codreanu SG, Stamer SL et al (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17:1706–1715. doi:10.1021/tx049767l

    Article  CAS  PubMed  Google Scholar 

  9. Song J, Durrin LK, Wilkinson T et al (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101:14373–14378. doi:10.1073/pnas.0403498101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275:36316–23. doi:10.1074/jbc.M004293200

    Article  CAS  PubMed  Google Scholar 

  11. Da Silva-Ferrada E, Lopitz-Otsoa F, Lang V et al (2012) Strategies to identify recognition signals and targets of SUMOylation. Biochem Res Int 2012:875148. doi:10.1155/2012/875148

    PubMed  PubMed Central  Google Scholar 

  12. Miteva M, Keusekotten K, Hofmann K et al (2010) Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell Biochem 54:195–214. doi:10.1007/978-1-4419-6676-6_16

    Article  CAS  PubMed  Google Scholar 

  13. Vogt B, Hofmann K (2012) Bioinformatical detection of recognition factors for ubiquitin and SUMO. Methods Mol Biol 832:249–261. doi:10.1007/978-1-61779-474-2_18

    Article  CAS  PubMed  Google Scholar 

  14. Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280:40122–40129. doi:10.1074/jbc.M507059200

    Article  CAS  PubMed  Google Scholar 

  15. Hecker C-M, Rabiller M, Haglund K et al (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127. doi:10.1074/jbc.M512757200

    Article  CAS  PubMed  Google Scholar 

  16. Jackson PK (2001) A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev 15:3053–3058. doi:10.1101/gad.955501

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt D, Müller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99:2872–2877. doi:10.1073/pnas.052559499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uzunova K, Göttsche K, Miteva M et al (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175. doi:10.1074/jbc.M706505200

    Article  CAS  PubMed  Google Scholar 

  19. Tatham MH, Geoffroy M-C, Shen L et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546. doi:10.1038/ncb1716

    Article  CAS  PubMed  Google Scholar 

  20. Da Silva-Ferrada E, Xolalpa W, Lang V et al (2013) Analysis of SUMOylated proteins using SUMO-traps. Sci Rep 3:1690. doi:10.1038/srep01690

    PubMed  PubMed Central  Google Scholar 

  21. Lang V, Aillet F, Da Silva-Ferrada E et al (2014) Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods 77–78:112–118. doi:10.1016/j.ymeth.2014.09.001

    PubMed  Google Scholar 

  22. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation.Protein Sci. 8(4):921–9.

    Google Scholar 

  23. Hjerpe R, Aillet F, Lopitz-Otsoa F et al (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10:1250–1258. doi:10.1038/embor.2009.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Way M, Pope B, Gooch J et al (1990) Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J 9:4103–4109

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkBα inhibits NF-kB activation. Mol Cell 2:233–239. doi:10.1016/S1097-2765(00)80133-1

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez MS, Desterro JM, Lain S et al (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455–6461. doi:10.1093/emboj/18.22.6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

UCMB at Inbiomed was supported by the “Obra Social KUTXA” and the Diputación Foral de Gipuzkoa. The author(s) would like to acknowledge networking support by the PROTEOSTASIS action BM1307, supported by COST (European Cooperation in Science and Technology). RB acknowledges the support of the Spanish MINECO (BFU2014-52282-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel S. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lang, V., Da Silva-Ferrada, E., Barrio, R., Sutherland, J.D., Rodriguez, M.S. (2016). Using Biotinylated SUMO-Traps to Analyze SUMOylated Proteins. In: Rodriguez, M. (eds) SUMO. Methods in Molecular Biology, vol 1475. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6358-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6358-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6356-0

  • Online ISBN: 978-1-4939-6358-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics