Skip to main content
Book cover

SUMO pp 79–98Cite as

Identification and Characterization of SUMO-SIM Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1475))

Abstract

The covalent attachment of SUMO to lysine residues of cellular proteins serves as an important mechanism for the dynamic control of protein networks. SUMO conjugates typically mediate selected protein-protein interactions by binding to specific recognition modules. Identification of SUMO-binding proteins and the characterization of the binding motifs are key to understanding SUMO signaling. Here we describe two complementary approaches that are used to tackle these questions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17(6):666–672. doi:10.1038/nsmb.1842

    Article  CAS  PubMed  Google Scholar 

  2. Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 10(10):659–671. doi:10.1038/nrm2767

    Article  CAS  PubMed  Google Scholar 

  3. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322. doi:10.1146/annurev-biochem-051810-094654

    Article  CAS  PubMed  Google Scholar 

  4. Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428(2):133–145. doi:10.1042/BJ20100158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11(12):861–871. doi:10.1038/nrm3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jentsch S, Psakhye I (2013) Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet 47:167–186. doi:10.1146/annurev-genet-111212-133453

    Article  CAS  PubMed  Google Scholar 

  7. Raman N, Nayak A, Muller S (2013) The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 122(6):475–485. doi:10.1007/s00412-013-0429-6

    Article  CAS  PubMed  Google Scholar 

  8. Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32(3):301–305. doi:10.1016/j.molcel.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8(6):550–555. doi:10.1038/sj.embor.7400980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erker Y, Neyret-Kahn H, Seeler JS, Dejean A, Atfi A, Levy L (2013) Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 33(11):2163–2177. doi:10.1128/MCB.01019-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kung CC, Naik MT, Wang SH, Shih HM, Chang CC, Lin LY, Chen CL, Ma C, Chang CF, Huang TH (2014) Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain. Biochem J 462(1):53–65. doi:10.1042/BJ20140521

    Article  CAS  PubMed  Google Scholar 

  12. Miteva M, Keusekotten K, Hofmann K, Praefcke GJ, Dohmen RJ (2010) Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell Biochem 54:195–214. doi:10.1007/978-1-4419-6676-6_16

    Article  CAS  PubMed  Google Scholar 

  13. Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, Kuo HY, Ho CC, Hsieh YL, Lin CH, Huang NJ, Naik NM, Kung CC, Lin SY, Chen RH, Chang KS, Huang TH, Shih HM (2011) Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell 42(1):62–74. doi:10.1016/j.molcel.2011.02.022

    Article  CAS  PubMed  Google Scholar 

  14. Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281(23):16117–16127. doi:10.1074/jbc.M512757200

    Article  CAS  PubMed  Google Scholar 

  15. Stehmeier P, Muller S (2009) Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell 33(3):400–409. doi:10.1016/j.molcel.2009.01.013

    Article  CAS  PubMed  Google Scholar 

  16. Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435(7044):979–982. doi:10.1038/nature03634

    Article  CAS  PubMed  Google Scholar 

  17. Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M (2006) Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J Mol Biol 359(1):137–147. doi:10.1016/j.jmb.2006.03.036

    Article  CAS  PubMed  Google Scholar 

  18. Sekiyama N, Arita K, Ikeda Y, Hashiguchi K, Ariyoshi M, Tochio H, Saitoh H, Shirakawa M (2010) Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins 78(6):1491–1502. doi:10.1002/prot.22667

    CAS  PubMed  Google Scholar 

  19. Sekiyama N, Ikegami T, Yamane T, Ikeguchi M, Uchimura Y, Baba D, Ariyoshi M, Tochio H, Saitoh H, Shirakawa M (2008) Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J Biol Chem 283(51):35966–35975. doi:10.1074/jbc.M802528200

    Article  CAS  PubMed  Google Scholar 

  20. Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280(48):40122–40129. doi:10.1074/jbc.M507059200

    Article  CAS  PubMed  Google Scholar 

  21. Sun H, Hunter T (2012) Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J Biol Chem 287(50):42071–42083. doi:10.1074/jbc.M112.410985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cappadocia L, Mascle XH, Bourdeau V, Tremblay-Belzile S, Chaker-Margot M, Lussier-Price M, Wada J, Sakaguchi K, Aubry M, Ferbeyre G, Omichinski JG (2015) Structural and functional characterization of the phosphorylation-dependent interaction between PML and SUMO1. Structure 23(1):126–138. doi:10.1016/j.str.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  23. Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, Choi CY, Matunis MJ (2008) Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J Biol Chem 283(43):29405–29415. doi:10.1074/jbc.M803632200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ullmann R, Chien CD, Avantaggiati ML, Muller S (2012) An acetylation switch regulates SUMO-dependent protein interaction networks. Mol Cell 46(6):759–770. doi:10.1016/j.molcel.2012.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogt B, Hofmann K (2012) Bioinformatical detection of recognition factors for ubiquitin and SUMO. Methods Mol Biol 832:249–261. doi:10.1007/978-1-61779-474-2_18

    Article  CAS  PubMed  Google Scholar 

  26. Thaminy S, Miller J, Stagljar I (2004) The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol Biol 261:297–312. doi:10.1385/1-59259-762-9:297

    CAS  PubMed  Google Scholar 

  27. Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275(46):36316–36323. doi:10.1074/jbc.M004293200

    Article  CAS  PubMed  Google Scholar 

  28. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428–433. doi:10.1038/nature03665

    CAS  PubMed  Google Scholar 

  29. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280(6):4102–4110. doi:10.1074/jbc.M413209200

    Article  CAS  PubMed  Google Scholar 

  30. Kroetz MB, Hochstrasser M (2009) Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Methods Mol Biol 497:107–120. doi:10.1007/978-1-59745-566-4_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Namanja AT, Li YJ, Su Y, Wong S, Lu J, Colson LT, Wu C, Li SS, Chen Y (2012) Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. J Biol Chem 287(5):3231–3240. doi:10.1074/jbc.M111.293118

    Article  CAS  PubMed  Google Scholar 

  32. Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, van Noort J, Rhodes D, Chin JW (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36(1):153–163. doi:10.1016/j.molcel.2009.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge networking support by the Proteostasis COST action (BM1307) and the LOEWE Ub-Net. S.M. is funded by the DFG collaborative research centers SFB815 and SFB1177.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koraljka Husnjak or Stefan Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Husnjak, K., Keiten-Schmitz, J., Müller, S. (2016). Identification and Characterization of SUMO-SIM Interactions. In: Rodriguez, M. (eds) SUMO. Methods in Molecular Biology, vol 1475. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6358-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6358-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6356-0

  • Online ISBN: 978-1-4939-6358-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics