Skip to main content

Analysis of SUMOylated Proteins in Cells and In Vivo Using the bioSUMO Strategy

  • Protocol
  • First Online:
SUMO

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1475))

Abstract

Posttranslational regulation of proteins by conjugation of ubiquitin- and ubiquitin-like molecules is a common theme in almost every known biological pathway. SUMO (small ubiquitin-related modifier) is dynamically added and deleted from many cellular substrates to control activity, localization, and recruitment of other SUMO-recognizing protein complexes. The dynamic nature of this modification and its low abundance in resting cells make it challenging to study, with susceptibility to deSUMOylases further complicating its analysis. Here we describe bioSUMO, a general method to isolate and analyze SUMOylated proteins from cultured cells, using Drosophila as a highlighted example. The method also has been validated in transgenic flies, as well as human cells. SUMOylated substrates are labeled by in vivo biotinylation, which facilitates their subsequent purification using streptavidin-based affinity chromatography under stringent conditions and with very low background. The bioSUMO approach can be used to validate whether a specific protein is modified, or used to analyze an entire SUMO subproteome. If coupled to quantitative proteomics methods, it may reveal how the SUMO landscape changes with different stimuli, or in diverse cell or tissue types. This technique offers a complementary approach to study SUMO biology and we expect that the strategy can be extended to other ubiquitin-like proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raman N, Nayak A, Muller S (2013) The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 122(6):475–485

    Article  CAS  PubMed  Google Scholar 

  2. Talamillo A, Sanchez J, Barrio R (2008) Functional analysis of the SUMOylation pathway in Drosophila. Biochem Soc Trans 36(Pt 5):868–873

    Article  CAS  PubMed  Google Scholar 

  3. Talamillo A, Martin D, Hjerpe R et al (2010) SUMO and ubiquitin modifications during steroid hormone synthesis and function. Biochem Soc Trans 38(Pt 1):54–59

    Article  CAS  PubMed  Google Scholar 

  4. Nie M, Xie Y, Loo JA et al (2009) Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PLoS One 4(6):e5905

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galisson F, Mahrouche L, Courcelles M et al (2011) A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 10(2):M110.004796

    Article  PubMed  Google Scholar 

  6. Hendriks IA, D’Souza RC, Chang JG et al (2015) System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun 6:7289

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hendriks IA, Treffers LW, Verlaan-de Vries M et al (2015) SUMO-2 orchestrates chromatin modifiers in response to DNA damage. Cell Rep pii: S2211–1247(15)00179-5

    Google Scholar 

  8. Hendriks IA, D’Souza RC, Yang B et al (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21(10):927–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schimmel J, Eifler K, Sigurethsson JO et al (2014) Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell 53(6):1053–1066

    Article  CAS  PubMed  Google Scholar 

  10. Matic I, Schimmel J, Hendriks IA et al (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39(4):641–652

    Article  CAS  PubMed  Google Scholar 

  11. Handu M, Kaduskar B, Ravindranathan R et al (2015) SUMO Enriched Proteome for Drosophila Innate Immune Response. G3 (Bethesda) 5(10):2137–2154

    Article  Google Scholar 

  12. Sloan E, Tatham MH, Groslambert M et al (2015) Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog 11(7):e1005059

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tammsalu T, Matic I, Jaffray EG et al (2014) Proteome-wide identification of SUMO2 modification sites. Sci Signal 7(323):rs2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tammsalu T, Matic I, Jaffray EG et al (2015) Proteome-wide identification of SUMO modification sites by mass spectrometry. Nat Protoc 10(9):1374–1388

    Article  CAS  PubMed  Google Scholar 

  15. Talamillo A, Herboso L, Pirone L et al (2013) Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet 9(4):e1003473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Franco M, Seyfried NT, Brand AH et al (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10(5):M110.002188

    Article  PubMed  Google Scholar 

  17. Lectez B, Migotti R, Lee SY et al (2014) Ubiquitin profiling in liver using a transgenic mouse with biotinylated ubiquitin. J Proteome Res 13(6):3016–3026

    Article  CAS  PubMed  Google Scholar 

  18. Sanchez J, Talamillo A, Lopitz-Otsoa F et al (2010) Sumoylation modulates the activity of Spalt-like proteins during wing development in Drosophila. J Biol Chem 285(33):25841–25849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez M, Martin-Ruiz I, Jimenez S et al (2011) Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep 1:75

    PubMed  PubMed Central  Google Scholar 

  20. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge other colleagues who initiated us in the biotin-based protocols: Maribel Franco, Juanma Ramirez, Aitor Martinez, Benoit Lectez, and So Young Lee. We would also like to thank the excellent MS support received from Jesper Olsen, Jón Otti Sigurðsson (University of Copenhagen, DK) and Félix Elortza (CIC bioGUNE, Bizkaia, Spain). This chapter is based upon work from COST Action (PROTEOSTASIS BM1307), supported by COST (European Cooperation in Science and Technology). R.B. acknowledges the Spanish Ministry of Economy and Competitiveness grant (BFU2014-52282-P), the Consolider network (BFU2014-57703- REDC), the Department of Industry of the Basque Government, and the Bizkaia County. L.P. and R.B. acknowledge the UPStream ITN network (PITN-GA-2011-290257). U.M. acknowledges the Spanish Ministry of Economy and Competitiveness grant (SAF2013-44782-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosa Barrio or James D. Sutherland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pirone, L., Xolalpa, W., Mayor, U., Barrio, R., Sutherland, J.D. (2016). Analysis of SUMOylated Proteins in Cells and In Vivo Using the bioSUMO Strategy. In: Rodriguez, M. (eds) SUMO. Methods in Molecular Biology, vol 1475. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6358-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6358-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6356-0

  • Online ISBN: 978-1-4939-6358-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics