Skip to main content

Erythropoietin as Potential Neuroprotective and Antiepileptogenic Agent in Epilepsy and Refractory Epilepsy

  • Protocol
  • First Online:
Book cover Antiepileptic Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Erythropoietin (EPO) can mediate neuroprotective effects by limiting the damage and death of cells that are still alive. This effect depends on the activation of both receptor to EPO (EPO-R), which undergoes a classic dimeric conformation called (EPO-R)2, and the EPOR-β common receptor (βCR). The interaction between EPO and EPO-R can prevent and repair tissue damage induced by hypoxia and neuroinflammation. The current chapter is focused on presenting the information necessary to support the hypothesis that EPO administration and/or EPO-R activation can represent a new therapeutic strategy to prevent the development of pharmacoresistant epilepsy after hypoxic events. This pharmacological effect can prevent the overexpression of multidrug resistant proteins, particularly P-glycoprotein (P-gp), which is an event induced by hypoxia and producing refractory epilepsy. The administration of high doses of EPO could also reduce the brain damage that results from seizure activity seen in the epileptogenic process subsequent to status epilepticus and perhaps avoids sudden unexpected death in epilepsy (SUDEP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silver I, Erecinska M (1998) Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol 454:7–16

    Article  CAS  PubMed  Google Scholar 

  2. Caplan L (2000) Posterior circulation ischemia: then, now, and tomorrow. Stroke 31:2011–2023

    Article  CAS  PubMed  Google Scholar 

  3. Pierson D (2000) Pathophysiology and clinical effects of chronic hypoxia. Respir Care 45:39–511

    CAS  PubMed  Google Scholar 

  4. Carbonell T, Rama R (2009) Respiratory hypoxia and oxidative stress in the brain. Is the endogenous erythropoietin an antioxidant? Curr Chem Biol 3:238–252

    CAS  Google Scholar 

  5. Ratan RR, Siddiq A, Smirnova N, Karpisheva K, Haskew‐Layton R, McConoughey S, Langley B, Gy J, Estevez A, Huerta PT, Volpe B, Roy S, Sen CK, Azaran I, Cho S, Fink M, LaManna J (2007) Harnessing hypoxic adaptation to prevent, treat, and repair stroke. J Mol Med 85:1331–1338

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peers C (1997) Oxygen-sensitive ion channels. Trends Pharmacol Sci 18:405–408

    Article  CAS  PubMed  Google Scholar 

  7. López-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055

    Article  PubMed  PubMed Central  Google Scholar 

  8. Onodera H, Sato G, Kogure K (1987) GABA and benzodiazepine receptors in the gerbil brain after transient ischemia: demonstration by quantitative receptor autoradiography. J Cereb Blood Flow Metab 7:82–88

    Article  CAS  PubMed  Google Scholar 

  9. Pichiule P, Chavez JC, Boero J et al (1996) Chronic hypoxia induces modification of the N-methyl-D-aspartate receptor in rat brain. Neurosci Lett 218:83–86

    Article  CAS  PubMed  Google Scholar 

  10. Viapianoa MS, Mitridate de Novarab AM, Fiszer de Plazasb S et al (2001) Prolonged exposure to hypobaric hypoxia transiently reduces GABAA receptor number in mice cerebral cortex. Brain Res 894:31–36

    Article  Google Scholar 

  11. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5:437–488

    Article  CAS  PubMed  Google Scholar 

  12. Walshe TE, D’Amore PA (2008) The role of hypoxia in vascular injury and repair. Annu Rev Pathol Mech Dis 3:615–643

    Article  CAS  Google Scholar 

  13. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    Article  CAS  PubMed  Google Scholar 

  14. Appelhoff RJ, Tian YM, Raval RR et al (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  CAS  PubMed  Google Scholar 

  15. Jelkmann W (2004) Molecular biology of erythropoietin. Intern Med 43:649–659

    Article  CAS  PubMed  Google Scholar 

  16. Marti HH (2004) Erythropoietin and the hypoxic brain. J Exp Biol 207:3233–3242

    Article  CAS  PubMed  Google Scholar 

  17. Bernaudin M, Marti HH, Roussel S et al (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  CAS  PubMed  Google Scholar 

  18. Stockmann C, Fandrey J (2006) Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol 33:968–979

    Article  CAS  PubMed  Google Scholar 

  19. Lin FK, Suggs S, Lin CH et al (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A 82:7580–7584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McPherson RJ, Juul SE (2008) Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci 26(1):103–111

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi T, Yanase H, Iwanaga T et al (2002) Epididymis is a novel site of erythropoietin production in mouse reproductive organs. Biochem Biophys Res Commun 296:145–151

    Article  CAS  PubMed  Google Scholar 

  22. Marti HH, Wenger RH, Rivas LA et al (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8:666–676

    Article  CAS  PubMed  Google Scholar 

  23. Masuda S, Kobayashi T, Chikuma M et al (2000) The oviduct produces erythropoietin in an estrogen- and oxygen-dependent manner. Am J Physiol Endocrinol Metab 278:E1038–E1044

    CAS  PubMed  Google Scholar 

  24. Fandrey J, Bunn HF (1993) In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood 81:617–623

    CAS  PubMed  Google Scholar 

  25. Ghezzi P, Brines M (2004) Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 11:S37–S44

    Article  CAS  PubMed  Google Scholar 

  26. Wenger RH (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203(Pt 8):1253–1263

    CAS  PubMed  Google Scholar 

  27. Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M, Eckardt K-U (2004) Differentiating the functional role of hypoxia-inducible factor HIF-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2 target gene in Hep3B and Kelly cells. FASEB J 18:1462–1464

    CAS  PubMed  Google Scholar 

  28. Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37(9):364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Temple RM, Eedington DW, Swaison CP, Winney R (1990) Seizure related to erythropoietin treatment in patients undergoing dialysis. Br Med J 300:46

    Article  CAS  Google Scholar 

  30. Brown AL, TIucker B, Baker LRI, Rainie AEG (1989) Seizures related to blood transfusion and erythropoietin treatment in patients undergoing dialysis. Br Med J 299:1258–1259

    Article  CAS  Google Scholar 

  31. Edmunds ME, Walls J, Tucker B, Baker LR, Tomson CR, Ward M, Cunningham J, Moore R, Winearls CG (1989) Seizures in haemodialysis patients treated with recombinant human erythropoietin. Nephrol Dial Transplant 4(12):1065–1069

    CAS  PubMed  Google Scholar 

  32. Cengiz K, Islek I (1996) Does erythropoietin cause epilepsy? Nephron 73:320–321

    Article  CAS  PubMed  Google Scholar 

  33. Digicaylioglu M, Bichet S, Marti HH et al (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci U S A 92:3717–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  35. Rabie T, Marti HH (2008) Brain protection by erythropoietin: a manifold task. Physiol Rev 23:263–274

    CAS  Google Scholar 

  36. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98:4044–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Merelli A, Caltana L, Girimonti P et al (2011) Recovery of motor spontaneous activity after intranasal delivery of human recombinant erythropoietin in a focal brain hypoxia model induced by CoCl2 in rats. Neurotox Res 20:182–192

    Google Scholar 

  38. Brines M, Cerami A (2008) Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med 264:405–432

    Article  CAS  PubMed  Google Scholar 

  39. Livnah O, Stura EA, Middleton SA et al (1999) Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283:987–990

    Article  CAS  PubMed  Google Scholar 

  40. Wen TC, Sadamoto Y, Tanaka J et al (2002) Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J Neurosci Res 67:795–803

    Article  CAS  PubMed  Google Scholar 

  41. Grasso G, Buemi M, Alafaci C et al (2002) Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci U S A 99:5627–5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6:484–494

    Article  CAS  PubMed  Google Scholar 

  43. Shingo T, Sorokan ST, Shimazaki T et al (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    CAS  PubMed  Google Scholar 

  44. Wang L, Zhang Z, Wang Y et al (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737

    Article  CAS  PubMed  Google Scholar 

  45. Chong ZZ, Kang J-Q, Maiese K (2003) Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br J Pharmacol 138:1107–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Theodore WH, Spencer SS, Wiebe S et al (2006) Epilepsy in North America: a report prepared under the auspices of the global campaign against epilepsy, the International Bureau for Epilepsy, the International League Against Epilepsy, and the World Health Organization. Epilepsia 47:1700–1722

    Article  PubMed  Google Scholar 

  47. Czornyj L, Lazarowski A (2014) ABC-transporters as stem-cell markers in brain dysplasia/tumor epilepsies. Front Biosci 19:1425–1435

    Article  Google Scholar 

  48. Berg AT (2009) Identification of pharmacoresistant epilepsy. Neurol Clin 27:1003–1013

    Article  PubMed  PubMed Central  Google Scholar 

  49. Auzmendi JA, Orozco-Suárez SI, Bañuelos-Cabrera I et al (2013) P-Glycoprotein contributes to cell membrane depolarization of hippocampus and neocortex in a model of repetitive seizures induced by pentylenetetrazole in rats. Curr Pharm Des 19:6732–6738

    Article  CAS  PubMed  Google Scholar 

  50. Lazarowski A, Ramos AJ, Garcìa-Rivello H et al (2004) Neuronal and glial expression of the multidrug resistance gene product in an experimental epilepsy model. Cell Biol Neurobiol 24:77–85

    Article  CAS  Google Scholar 

  51. Hocht C, Lazarowski A, Gonzalez NN et al (2007) Nimodipine restores the altered hippocampal phenytoin pharmacokinetics in a refractory epileptic model. Neurosci Lett 413:168–172

    Article  PubMed  CAS  Google Scholar 

  52. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H (2008) Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 73(5):1444–1453

    Article  CAS  PubMed  Google Scholar 

  53. Mattson MP (1998) Free radicals, calcium, and the synaptic plasticity-cell death continuum: emerging roles of the transcription factor NFkB. Int Rev Neurobiol 42:103–68, In: Bradley RJ, Harris RA, Jenner P (eds)

    Article  CAS  PubMed  Google Scholar 

  54. Minotti AM, Barlow SB, Cabral F (1991) Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 266:3987–3994

    CAS  PubMed  Google Scholar 

  55. Callaghan R, van Gorkom LC, Epand RM (1992) A comparison of membrane properties and composition between cell lines selected and transfected for multi-drug resistance. Br J Cancer 66(5):781–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wadkins RM, Roepe PD (1997) Biophysical aspect of P-glycoprotein mediated multidrug resistance. Int Rev Cytol 171:121–165

    Article  CAS  PubMed  Google Scholar 

  57. Roepe PD (2000) What is the precise role of human MDR1 protein in chemotherapeutic drug resistance? Curr Pharm Des 6:241–260

    Article  CAS  PubMed  Google Scholar 

  58. Robey RW, Lazarowski A, Bates SE (2008) P-glycoprotein—a clinical target in drug-refractory epilepsy? Mol Pharmacol 73:1343–1346

    Article  CAS  PubMed  Google Scholar 

  59. Merelli A, Caltana L, Lazarowski A et al (2011) Experimental evidence of the potential use of erythropoietin by intranasal administration as a neuroprotective agent in cerebral hypoxia. Drug Metabol Drug Interact 26(2):65–69

    Article  CAS  PubMed  Google Scholar 

  60. Téllez-Zenteno JF, Hernández Ronquillo L, Wiebe S (2005) Sudden unexpected death in epilepsy: evidence-based analysis of incidence and risk factors. Epilepsy Res 65:101–115

    Article  PubMed  Google Scholar 

  61. Spencer RG, Cox TS, Kaplan PW (1998) Global T-wave inversion associated with nonconvulsive status epilepticus. Ann Intern Med 129:163–164

    Article  CAS  PubMed  Google Scholar 

  62. Tigaran S, Molgaard H, McClelland R et al (2003) Evidence of cardiac ischemia during seizures in drug refractory epilepsy patients. Neurology 60:492–495

    Article  CAS  PubMed  Google Scholar 

  63. Auzmendi J, Merelli A, Girardi E et al (2014) Progressive heart P-glycoprotein (P-gp) overexpression after experimental repetitive seizures (ERS) associated with fatal status epilepticus (FSE) Is it related with SUDEP? Mol Cell Epilepsy 1:e66

    Google Scholar 

  64. Bauer B, Hartz AM, Miller DS (2007) Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol 71:667–675

    Article  CAS  PubMed  Google Scholar 

  65. Berg-Johnsen J, Grøndahl TO, Langmoen IA et al (1995) Changes in amino acid release and membrane potential during cerebral hypoxia and glucose deprivation. Neurol Res 17:201–208

    Article  CAS  PubMed  Google Scholar 

  66. Sun DA, Sombati S, DeLorenzo RJ (2001) Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced “epilepsy.”. Stroke 32:2344–2350

    Article  CAS  PubMed  Google Scholar 

  67. Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44(11 Suppl 8):S14–S23

    CAS  PubMed  Google Scholar 

  68. Kunimatsu T, Asai S, Kanematsu K, Zhao H, Kohno T, Misaki T, Ishikawa K (1999) Transient in vivo membrane depolarization and glutamate release before anoxic depolarization in rat striatum. Brain Res 831(1–2):273–282

    Article  CAS  PubMed  Google Scholar 

  69. Lucchi C, Vinet J, Meletti S, Biagini G (2015) Ischemic-hypoxic mechanisms leading to hippocampal dysfunction as a consequence of status epilepticus. Epilepsy Behav 49:47–54

    Article  PubMed  Google Scholar 

  70. Camilo O, Goldstein LB (2004) Seizures and epilepsy after ischemic stroke. Stroke 35:1769–1775

    Article  PubMed  Google Scholar 

  71. Inoue T, Shimizu M, Hamano S, Murakami N, Nagai T, Sakuta R (2014) Epilepsy and West syndrome in neonates with hypoxic-ischemic encephalopathy. Pediatr Int 56(3):369–372

    Article  PubMed  Google Scholar 

  72. Kreisman NR (1988) Cerebral hypoxia during repetitive seizures. In: Somjen G (ed) Mechanisms of cerebral hypoxia and stroke, vol 35, Advances in behavioral biology. Springer, New York, pp 139–149

    Chapter  Google Scholar 

  73. Wirrell EC, Armstrong EA, Osman LD, Yager JY (2001) Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr Res 50:445–454

    Article  CAS  PubMed  Google Scholar 

  74. Bateman LM, Li CS, Seyal M (2008) Ictal hypoxemia in localization related epilepsy: analysis of incidence, severity and risk factors. Brain 131:3239–3245

    Article  PubMed  PubMed Central  Google Scholar 

  75. Moseley BD, Nickels K, Britton J et al (2010) How common is ictal hypoxemia and bradycardia in children with partial complex and generalized convulsive seizures? Epilepsia 51:1219–1224

    Article  PubMed  Google Scholar 

  76. Nikitilidou L, Kanter-Schlifke I, Dhondt J et al (2012) VEGF receptor-2 (Flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One 7(7):e40535

    Article  CAS  Google Scholar 

  77. Nicoletti JN, Shah SK, McCloskey DP et al (2008) Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 151:232–241

    Article  CAS  PubMed  Google Scholar 

  78. Boer K, Troost D, Spliet WG et al (2008) Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB. Acta Neuropathol 115:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rigau V, Morin M, Rousset MC et al (2007) Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956

    Article  PubMed  Google Scholar 

  80. Feast A, Martinian L, Liu J et al (2012) Investigation of hypoxia-inducible factor-1α in hippocampal sclerosis: A postmortem study. Epilepsia 53:1349–1359

    Article  PubMed  Google Scholar 

  81. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  82. Aviles-Reyes RX, Angelo MF, Villarreal A et al (2010) Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 112:854–869

    Article  CAS  PubMed  Google Scholar 

  83. Ramos AJ, Lazarowski A, Villar MJ et al (2004) Transient expression of MDR-1/P-glycoprotein in a model of partial cortical devascularization. Cell Mol Neurobiol 24(1):101–107

    Article  CAS  PubMed  Google Scholar 

  84. Lazarowski A, Caltana L, Merelli L et al (2007) Neuronal mdr-1 gene expression after experimental focal hypoxia: a new obstacle for neuroprotection? J Neurol Sci 258:84–92

    Article  CAS  PubMed  Google Scholar 

  85. Yu C, Argyropoulos G, Zhang Y, Kastin AJ, Hsuchou H, Pan W (2008) Neuroinflammation activates Mdr1b efflux transport through NFkappaB: promoter analysis in BBB endothelia. Cell Physiol Biochem 22(5-6):745–756 20-McPherson RJ, Juul SE (2008) Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci 26(1):103–111

    Google Scholar 

  86. Yang J, He F, Meng Q, Sun Y, Wang W, Wang C (2016) Inhibiting HIF-1α decreases expression of TNF-α and caspase-3 in specific brain regions exposed kainic acid-induced status epilepticus. Cell Physiol Biochem 38(1):75–82

    Article  CAS  PubMed  Google Scholar 

  87. Nadam J, Navarro F, Sanchez P et al (2007) Neuroprotective effects of erythropoietin in the rat hippocampus after pilocarpine-induced status epilepticus. Neurobiol Dis 25:412–426

    Article  CAS  PubMed  Google Scholar 

  88. Chu K, Jung KH, Lee ST et al (2008) Erythropoietin reduces epileptogenic processes following status epilepticus. Epilepsia 49:1723–1732

    Article  CAS  PubMed  Google Scholar 

  89. Bahçekapılı N, Akgün-Dar K, Albeniz I et al (2014) Erythropoietin pretreatment suppresses seizures and prevents the increase in inflammatory mediators during pentylenetetrazole-induced generalized seizures. Int J Neurosci 124(10):762–770

    Article  PubMed  CAS  Google Scholar 

  90. Sözmen SÇ, Kurul SH, Yiş U et al (2012) Neuroprotective effects of recombinant human erythropoietin in the developing brain of after lithium-pilocarpine induced status epilepticus. Brain Dev 34:189–195

    Article  PubMed  Google Scholar 

  91. Ma BX, Li J, Li H et al (2015) Recombinant human erythropoietin protects myocardial cells from apoptosis via the janus-activated kinase 2/signal transducer and activator of transcription 5 pathway in rats with epilepsy. Curr Ther Res Clin Exp 77:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jung KH, Chu K, Lee ST et al (2011) Molecular alterations underlying epileptogenesis after pro-longed febrile seizure and modulation by erythropoietin. Epilepsia 52:541–550

    Article  CAS  PubMed  Google Scholar 

  93. Koshimura K, Murakami Y, Sohmiya M et al (1999) Effects of erythropoietin on neuronal activity. J Neurochem 72(6):2565–2572

    Article  CAS  PubMed  Google Scholar 

  94. Masuda S, Nagao M, Takahata K et al (1993) Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 268:11208–11216

    CAS  PubMed  Google Scholar 

  95. Merelli A, Czornyj L, Lazarowski A (2013) Erythropoietin: a neuroprotective agent in cerebral hypoxia, neurodegeneration, and epilepsy. Curr Pharm Des 19:6791–6801

    Article  CAS  PubMed  Google Scholar 

  96. Merelli A, Czornyj L, Lazarowski A (2015) Erythropoietin as a new therapeutic opportunity in brain inflammation and neurodegenerative diseases. Int J Neurosci 125(11):793–797

    Article  CAS  PubMed  Google Scholar 

  97. Lipsic E, Schoemaker RG, van der Meer P, Voors AA, van Veldhuisen DJ, van Gilst WH (2006) Protective effects of erythropoietin in cardiac ischemia: from bench to bedside. J Am Coll Cardiol 48(11):2161–2167

    Article  CAS  PubMed  Google Scholar 

  98. Ma B-X, Li J, Li H, Wu S-S (2015) Recombinant human erythropoietin protects myocardial cells from apoptosis via the janus-activated kinase 2/signal transducer and activator of transcription 5 pathway in rats with epilepsy. Curr Ther Res 77:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Roesler R, Quevedo J, Schroder N (2004) Erythropoietin, glutamate, and neuroprotection. NEJM 351:1465–1466

    Article  CAS  PubMed  Google Scholar 

  100. Kawakami M, Sekiguchi M, Sato K et al (2001) Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 276:39469–39475

    Article  CAS  PubMed  Google Scholar 

  101. Mikati MA, El Hokayem JA, El Sabban ME (2007) Effects of a single dose of erythropoietin on subsequent seizure susceptibility in rats exposed to acute hypoxia at P10. Epilepsia 48:175–181

    Article  CAS  PubMed  Google Scholar 

  102. Lee TS, Lu KY, Yu YB et al (2015) β common receptor mediates erythropoietin-conferred protection on OxLDL-induced lipid accumulation and inflammation in macrophages. Mediators Inflamm 2015:439759

    PubMed  PubMed Central  Google Scholar 

  103. Nagai A, Nakagawa E, Choi HB et al (2001) Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60:386–392

    Article  CAS  PubMed  Google Scholar 

  104. Byts N, Samoylenko A, Fasshauer T et al (2008) Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death Differ 15:783–792

    Article  CAS  PubMed  Google Scholar 

  105. Sato T, Tanno M, Miki T (2010) Erythropoietin (EPO) affords more potent cardioprotection by activation of distinct signaling to mitochondrial kinases compared with carbamylated EPO. Cardiovasc Drugs Ther 24:401–408

    Article  CAS  PubMed  Google Scholar 

  106. Yin Y, Li W, Deng M et al (2014) Extracellular high mobility group box chromosomal protein 1 promotes drug resistance by increasing the expression of P-glycoprotein expression in gastric adenocarcinoma cells. Mol Med Rep 9(4):1439–1443

    CAS  PubMed  Google Scholar 

  107. Chen Y, Huang X-J, Yu N et al (2015) HMGB1 contributes to the expression of P-glycoprotein in mouse epileptic brain through toll-like receptor 4 and receptor for advanced glycation end products. PLoS One 10(10):e0140918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yao HC, Zhou M, Zhou YH et al (2015) Intravenous high mobility group box 1 upregulates the expression of HIF-1α in the myocardium via a protein kinase B-dependent pathway in rats following acute myocardial ischemia. Mol Med Rep 13:1211–1219 (PMID: 26648172)

    PubMed  PubMed Central  Google Scholar 

  109. Pitkänen A, Lukasiuk K (2009) Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 14:16–25

    Article  PubMed  Google Scholar 

  110. Vezzani A, Moneta D, Richichi C et al (2002) Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43:30–35

    Article  CAS  PubMed  Google Scholar 

  111. Gui D, Li Y, Chen X, Gao D, Yang Y, Li X (2015) HIF-1 signaling pathway involving iNOS, COX-2 and caspase-9 mediates the neuroprotection provided by erythropoietin in the retina of chronic ocular hypertension rats. Mol Med Rep 11:1490–1496

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Lazarowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marelli, A., Czornyj, L., Rocha, L., Lazarowski, A. (2016). Erythropoietin as Potential Neuroprotective and Antiepileptogenic Agent in Epilepsy and Refractory Epilepsy. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics