Skip to main content

Neurosteroid Regulation of Seizures: Role of GABAA Receptor Plasticity

  • Protocol
  • First Online:
Book cover Antiepileptic Drug Discovery

Abstract

Neurosteroids, which are derived from adrenal or gonadal steroid hormones or synthesized de novo from cholesterol in the brain, regulate neuronal excitability. Neurosteroids suppress seizures, and this action is particularly important in women with epilepsy, who may experience seizure exacerbation due to hormonal fluctuations associated with their menstrual cycle, called catamenial epilepsy. Neurosteroids exert their anticonvulsant action by increasing GABAA receptor-mediated fast inhibitory neurotransmission. However, the GABAA receptors expressed in epilepsy have altered subunit composition, such that higher concentrations of neurosteroids are required to enhance the inhibition. Despite advances in our understanding of the neurosteroid regulation of seizures via modulation of GABAA receptors, our knowledge of whether endogenous neurosteroid synthesis is altered by seizures or in epilepsy is incomplete. Furthermore, the molecular mechanisms that trigger the down-regulation of neurosteroid-sensitive GABAA receptors in epilepsy are not well understood. Insights into these aspects of neurosteroids and GABAA receptors could provide novel targets for the development of therapies aimed at a better management of seizures in women with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selye H (1942) Antagonism between anesthetic steroid hormones and pentamethylene tetrazol (Metrazol). J Lab Clin Med 27:1051–1053

    CAS  Google Scholar 

  2. Baulieu EE, Robel P, Vatior O, Haug A, Legoascogne C, Boorreau E (1987) Neurosteroids: pregnenolone and dehydroepiandrosterone in the rat brain. In: Fuxe K, Agant LF (eds) Receptor-receptor interaction, a new intra-membrane integrative mechanism. MacMillan, Basingstoke, p 89

    Google Scholar 

  3. Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287–292

    Article  CAS  PubMed  Google Scholar 

  4. Majewska MD, Bisserbe JC, Eskay RL (1985) Glucocorticoids are modulators of GABAA receptors in brain. Brain Res 339:178–182

    Article  CAS  PubMed  Google Scholar 

  5. Kokate TG, Svensson BE, Rogawski MA (1994) Anticonvulsant activity of neurosteroids: correlation with GABA-evoked chloride current potentiation. J Pharmacol Exp Ther 270:1223–1229

    CAS  PubMed  Google Scholar 

  6. Corpechot C, Young J, Calvel M et al (1993) Neurosteroids: 3α-hydroxy-5α-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology 133:1003–1009

    CAS  PubMed  Google Scholar 

  7. Purdy RH, Morrow AL, Moore PH Jr, Paul SM (1991) Stress-induced elevations of GABAA receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baulieu EE (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23:963–987

    Article  CAS  PubMed  Google Scholar 

  9. Do Rego JL, Seong JY, Burel D et al (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30:259–301

    Article  CAS  PubMed  Google Scholar 

  10. Mellon SH, Griffin LD, Compagnone NA (2001) Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 37:3–12

    Article  CAS  PubMed  Google Scholar 

  11. Rupprecht R, Rammes G, Eser D et al (2009) Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325:490–493

    Article  CAS  PubMed  Google Scholar 

  12. Korneyev A, Pan BS, Polo A, Romeo E, Guidotti A, Costa E (1993) Stimulation of brain pregnenolone synthesis by mitochondrial diazepam binding inhibitor receptor ligands in vivo. J Neurochem 61:1515–1524

    Article  CAS  PubMed  Google Scholar 

  13. Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX (2006) Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 138:749–756

    Article  CAS  PubMed  Google Scholar 

  14. Le GC, Robel P, Gouezou M, Sananes N, Baulieu EE, Waterman M (1987) Neurosteroids: cytochrome P-450scc in rat brain. Science 237:1212–1215

    Article  Google Scholar 

  15. Guennoun R, Fiddes RJ, Gouqzou M, LombFs M, Baulieu EE (1995) A key enzyme in the biosynthesis of neurosteroids, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD), is expressed in rat brain. Mol Brain Res 30:287–300

    Article  CAS  PubMed  Google Scholar 

  16. Petratos S, Hirst JJ, Mendis S, Anikijenko P, Walker DW (2000) Localization of P450scc and 5α-reductase type-2 in the cerebellum of fetal and newborn sheep. Dev Brain Res 123:81–86

    Article  CAS  Google Scholar 

  17. Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H (1999) Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 51:63–82

    CAS  PubMed  Google Scholar 

  18. Stoffel-Wagner B, Beyenburg S, Watzka M et al (2000) Expression of 5α-reductase and 3α-hydroxysteroid oxidoreductase in the hippocampus of patients with chronic temporal lobe epilepsy. Epilepsia 41:140–147

    Article  CAS  PubMed  Google Scholar 

  19. Stoffel-Wagner B, Watzka M, Steckelbroeck S et al (2003) Allopregnanolone serum levels and expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase isoforms in hippocampal and temporal cortex of patients with epilepsy. Epilepsy Res 54:11–19

    Article  CAS  PubMed  Google Scholar 

  20. Stoffel-Wagner B (2003) Neurosteroid biosynthesis in the human brain and its clinical implications. Ann N Y Acad Sci 1007:64–78

    Article  CAS  PubMed  Google Scholar 

  21. King SR, Manna PR, Ishii T et al (2002) An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J Neurosci 22:10613–10620

    CAS  PubMed  Google Scholar 

  22. Melcangi RC, Poletti A, Cavarretta I et al (1998) The 5α-reductase in the central nervous system: expression and modes of control. J Steroid Biochem Mol Biol 65:295–299

    Article  CAS  PubMed  Google Scholar 

  23. Stoffel-Wagner B (2001) Neurosteroid metabolism in the human brain. Eur J Endocrinol 145:669–679

    Article  CAS  PubMed  Google Scholar 

  24. Ibanez C, Guennoun R, Liere P et al (2003) Developmental expression of genes involved in neurosteroidogenesis: 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase in the rat brain. Endocrinology 144:2902–2911

    Article  CAS  PubMed  Google Scholar 

  25. Kimoto T, Tsurugizawa T, Ohta Y et al (2002) Cytochrome P450-dependent neurosteroid synthesis in the rat brain hippocampal neurons. Int Congr Ser 1233:127–137

    Article  CAS  Google Scholar 

  26. Agís-Balboa RC, Pinna G, Zhubi A et al (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 103:14602–14607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    Article  CAS  PubMed  Google Scholar 

  28. Morrow AL, Suzdak PD, Paul SM (1987) Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol 142:483–485

    Article  CAS  PubMed  Google Scholar 

  29. Gee KW, Bolger MB, Brinton RE, Coirini H, McEwen BS (1988) Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther 246:803–812

    CAS  PubMed  Google Scholar 

  30. Gee KW, Chang WC, Brinton RE, McEwen BS (1987) GABA-dependent modulation of the Cl- ionophore by steroids in rat brain. Eur J Pharmacol 136:419–423

    Article  CAS  PubMed  Google Scholar 

  31. Callachan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc Lond B Biol Sci 231:359–369

    Article  CAS  PubMed  Google Scholar 

  32. Cottrell GA, Lambert JJ, Peters JA (1987) Modulation of GABAA receptor activity by alphaxalone. Br J Pharmacol 90:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795–816

    Article  CAS  PubMed  Google Scholar 

  34. Mody I (2005) Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition. J Physiol 562:37–46

    Article  CAS  PubMed  Google Scholar 

  35. Mohler H (2006) GABAA receptor diversity and pharmacology. Cell Tissue Res 326:505–516

    Article  CAS  PubMed  Google Scholar 

  36. Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat Neurosci 1:563–571

    Article  CAS  PubMed  Google Scholar 

  37. Sun C, Sieghart W, Kapur J (2004) Distribution of α1, α4, γ2, and δ subunits of GABAA receptors in hippocampal granule cells. Brain Res 1029:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    CAS  PubMed  Google Scholar 

  39. Zhang N, Wei W, Mody I, Houser CR (2007) Altered localization of GABAA receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 27:7520–7531

    Article  CAS  PubMed  Google Scholar 

  40. Wei W, Zhang N, Peng Z, Houser CR, Mody I (2003) Perisynaptic localization of δ subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 23:10650–10661

    CAS  PubMed  Google Scholar 

  41. Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM (1999) Preferential coassembly of α4 and δ subunits of the GABAA receptor in rat thalamus. Mol Pharmacol 56:110–115

    CAS  PubMed  Google Scholar 

  42. Bencsits E, Ebert V, Tretter V, Sieghart W (1999) A significant part of native GABAA receptors containing α4 subunits do not contain γ or δ subunits. J Biol Chem 274:19613–19616

    Article  CAS  PubMed  Google Scholar 

  43. Quirk K, Gillard NP, Ragan CI, Whiting PJ, McKernan RM (1994) Model of subunit composition of GABAA receptor subtypes expressed in rat cerebellum with respect to their α and γ/δ subunits. J Biol Chem 269:16020–16028

    CAS  PubMed  Google Scholar 

  44. Glykys J, Peng Z, Chandra D, Homanics GE, Houser CR, Mody I (2007) A new naturally occurring GABAA receptor subunit partnership with high sensitivity to ethanol. Nat Neurosci 10:40–48

    Article  CAS  PubMed  Google Scholar 

  45. Peng Z, Huang CS, Stell BM, Mody I, Houser CR (2004) Altered expression of the δ subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci 24:8629–8639

    Article  CAS  PubMed  Google Scholar 

  46. Sigel E (2002) Mapping of the benzodiazepine recognition site on GABAA receptors. Curr Top Med Chem 2:833–839

    Article  CAS  PubMed  Google Scholar 

  47. Sieghart W (2015) Allosteric modulation of GABAA receptors via multiple drug-binding sites. Chapter 3. In: Uwe R (ed) Advances in pharmacology diversity and functions of GABA receptors: a tribute to Hanns Möhler, part A, Volume 72 edition. Academic. p 53

    Google Scholar 

  48. Hosie AM, Wilkins ME, da Silva HMA, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    Article  CAS  PubMed  Google Scholar 

  49. Wittmer LL, Hu Y, Kalkbrenner M, Evers AS, Zorumski CF, Covey DF (1996) Enantioselectivity of steroid-induced GABAA receptor modulation and anesthesia. Mol Pharmacol 50:1581–1586

    CAS  PubMed  Google Scholar 

  50. Akk G, Shu HJ, Wang C et al (2005) Neurosteroid Access to the GABAA Receptor. J Neurosci 25:11605–11613

    Article  CAS  PubMed  Google Scholar 

  51. Puia G, Santi M, Vicini S et al (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4:759–765

    Article  CAS  PubMed  Google Scholar 

  52. Hosie AM, Wilkins ME, Smart TG (2007) Neurosteroid binding sites on GABAA receptors. Pharmacol Ther 116:7–19

    Article  CAS  PubMed  Google Scholar 

  53. Mtchedlishvili Z, Kapur J (2003) A presynaptic action of the neurosteroid pregnenolone sulfate on GABAergic synaptic transmission. Mol Pharmacol 64:857–864

    Article  CAS  PubMed  Google Scholar 

  54. Majewska MD, Mienville JM, Vicini S (1988) Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett 90:279–284

    Article  CAS  PubMed  Google Scholar 

  55. Park-Chung M, Malayev A, Purdy RH, Gibbs TT, Farb DH (1999) Sulfated and unsulfated steroids modulate GABAA receptor function through distinct sites. Brain Res 830:72–87

    Article  CAS  PubMed  Google Scholar 

  56. Maitra R, Reynolds JN (1998) Modulation of GABA(A) receptor function by neuroactive steroids: evidence for heterogeneity of steroid sensitivity of recombinant GABAA receptor isoforms. Can J Physiol Pharmacol 76:909–920

    Article  CAS  PubMed  Google Scholar 

  57. Belelli D, Casula A, Ling A, Lambert JJ (2002) The influence of subunit composition on the interaction of neurosteroids with GABAA receptors. Neuropharmacology 43:651–661

    Article  CAS  PubMed  Google Scholar 

  58. Puia G, Ducic I, Vicini S, Costa E (1993) Does neurosteroid modulatory efficacy depend on GABAA receptor subunit composition? Receptors Channels 1:135–142

    CAS  PubMed  Google Scholar 

  59. Wohlfarth KM, Bianchi MT, Macdonald RL (2002) Enhanced neurosteroid potentiation of ternary GABAA receptors containing the δ subunit. J Neurosci 22:1541–1549

    CAS  PubMed  Google Scholar 

  60. Mihalek RM, Banerjee PK, Korpi ER et al (1999) Attenuated sensitivity to neuroactive steroids in GABAA receptor δ subunit knockout mice. Proc Natl Acad Sci U S A 96:12905–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Twyman RE, Macdonald RL (1992) Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol 456:215–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bianchi MT, Macdonald RL (2003) Neurosteroids shift partial agonist activation of GABAA receptor channels from low- to high-efficacy gating patterns. J Neurosci 23:10934–10943

    CAS  PubMed  Google Scholar 

  63. Nusser Z, Mody I (2006) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628

    Google Scholar 

  64. Mtchedlishvili Z, Kapur J (2006) High-affinity, slowly desensitizing GABAA receptors mediate tonic inhibition in hippocampal dentate granule cells. Mol Pharmacol 69:564–575

    Article  CAS  PubMed  Google Scholar 

  65. Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walker MC, Semyanov A (2008) Regulation of excitability by extrasynaptic GABAA receptors. Results Probl Cell Differ 44:29–48

    Article  CAS  PubMed  Google Scholar 

  67. Bright DP, Smart TG (2013) Methods for recording and measuring tonic GABAA receptor-mediated inhibition. Front Neural Circuits 7:193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Keller AF, Breton JD, Schlichter R, Poisbeau P (2004) Production of 5α-reduced neurosteroids is developmentally regulated and Shapes GABAA miniature IPSCs in lamina II of the spinal cord. J Neurosci 24:907–915

    Article  CAS  PubMed  Google Scholar 

  69. Shen H, Sabaliauskas N, Sherpa A et al (2010) A critical role for α4βδ GABAA receptors in shaping learning deficits at puberty in mice. Science 327:1515–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith SS, Aoki C, Shen H (2009) Puberty, steroids and GABAA receptor plasticity. Psychoneuroendocrinology 34(S1):S91–S103

    Article  CAS  PubMed  Google Scholar 

  71. Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    Article  CAS  PubMed  Google Scholar 

  72. Wu X, Gangisetty O, Carver CM, Reddy DS (2013) Estrous cycle regulation of extrasynaptic δ-containing GABAA receptor-mediated tonic inhibition and limbic epileptogenesis. J Pharmacol Exp Ther 346:146–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maguire J, Mody I (2007) Neurosteroid synthesis-mediated regulation of GABAA receptors: relevance to the ovarian cycle and stress. J Neurosci 27:2155–2162

    Article  CAS  PubMed  Google Scholar 

  74. Gangisetty O, Reddy DS (2010) Neurosteroid withdrawal regulates GABA-A receptor α4-subunit expression and seizure susceptibility by activation of progesterone receptor-independent Egr3 pathway. Neuroscience 170:865–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanna E, Mostallino MC, Murru L et al (2009) Changes in expression and function of extrasynaptic GABAA receptors in the rat hippocampus during pregnancy and after delivery. J Neurosci 29:1755–1765

    Article  CAS  PubMed  Google Scholar 

  76. Maguire J, Mody I (2008) GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Follesa P, Porcu P, Sogliano C et al (2002) Changes in GABAA receptor γ2 subunit gene expression induced by long-term administration of oral contraceptives in rats. Neuropharmacology 42:325–336

    Article  CAS  PubMed  Google Scholar 

  78. Bragin A, Wilson CL, Fields T, Fried I, Engel J Jr (2005) Analysis of seizure onset on the basis of wideband EEG recordings. Epilepsia 46(S5):59–63

    Article  PubMed  Google Scholar 

  79. Heinemann U, Beck H, Dreier JP, Ficker E, Stabel J, Zhang CL (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 7:273–280

    CAS  PubMed  Google Scholar 

  80. Lothman EW, Stringer JL, Bertram EH (1992) The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl 7:301–313

    CAS  PubMed  Google Scholar 

  81. Pathak HR, Weissinger F, Terunuma M et al (2007) Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci 27:14012–14022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stringer JL, Lothman EW (1989) Maximal dentate gyrus activation: characteristics and alterations after repeated seizures. J Neurophysiol 62:136–143

    CAS  PubMed  Google Scholar 

  83. Mtchedlishvili Z, Bertram EH, Kapur J (2001) Diminished allopregnanolone enhancement of GABAA receptor currents in a rat model of chronic temporal lobe epilepsy. J Physiol 537:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gibbs JW III, Shumate MD, Coulter DA (1997) Differential epilepsy-associated alterations in postsynaptic GABAA receptor function in dentate granule and CA1 neurons. J Neurophysiol 77:1924–1938

    CAS  PubMed  Google Scholar 

  85. Sun C, Mtchedlishvili Z, Erisir A, Kapur J (2007) Diminished neurosteroid sensitivity of synaptic inhibition and altered location of the α4 subunit of GABAA receptors in an animal model of epilepsy. J Neurosci 27:12641–12650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Otis TS, De Koninck Y, Mody I (1994) Lasting potentiation of inhibition is associated with an increased number of GABAA receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci U S A 91:7698–7702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leroy C, Poisbeau P, Keller AF, Nehlig A (2004) Pharmacological plasticity of GABAA receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol 557:473–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rajasekaran K, Joshi S, Sun C, Mtchedlishvilli Z, Kapur J (2010) Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiol Dis 40:490–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun C, Mtchedlishvili Z, Bertram EH, Erisir A, Kapur J (2007) Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J Comp Neurol 500:876–893

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 23:2440–2452

    CAS  PubMed  Google Scholar 

  91. Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385:385–404

    Article  CAS  PubMed  Google Scholar 

  92. Buckmaster PS, Jongen-Rêlo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic Rats. J Neurosci 19:9519–9529

    CAS  PubMed  Google Scholar 

  93. Raol YH, Lund IV, Bandyopadhyay S et al (2006) Enhancing GABAA receptor α1 Subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 26:11342–11346

    Article  CAS  PubMed  Google Scholar 

  94. Sperk G, Schwarzer C, Tsunashima K, Kandlhofer S (1998) Expression of GABAA receptor subunits in the hippocampus of the rat after kainic acid-induced seizures. Epilepsy Res 32:129–139

    Article  CAS  PubMed  Google Scholar 

  95. Tsunashima K, Schwarzer C, Kirchmair E, Sieghart W, Sperk G (1997) GABAA receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience 80:1019–1032

    Article  CAS  PubMed  Google Scholar 

  96. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166–1172

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez MI, Cruz DA, Brooks-Kayal A (2013) Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia 54:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lund IV, Hu Y, Raol YH et al (2008) BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci STKE 1:ra9

    Google Scholar 

  99. Loup F, Wieser HG, Yonekawa Y, Aguzzi A, Fritschy JM (2000) Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci 20:5401–5419

    CAS  PubMed  Google Scholar 

  100. Loup F, Picard F, Andre VM et al (2006) Altered expression of α3-containing GABAA receptors in the neocortex of patients with focal epilepsy. Brain 129:3277–3289

    Article  PubMed  Google Scholar 

  101. Palma E, Spinelli G, Torchia G et al (2005) Abnormal GABAA receptors from the human epileptic hippocampal subiculum microtransplanted to Xenopus oocytes. Proc Natl Acad Sci U S A 102:2514–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V (2013) Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 109:1746–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Joshi S, Kapur J (2013) NMDA Receptor activation down-regulates expression of δ subunit-containing GABAA receptors in cultured hippocampal neurons. Mol Pharmacol 84:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Naylor DE, Liu H, Niquet J, Wasterlain CG (2013) Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 54:225–238

    Article  CAS  PubMed  Google Scholar 

  105. Berkeley JL, Decker MJ, Levey AI (2002) The role of muscarinic acetylcholine receptor-mediated activation of ERK1/2 in pilocarpine-induced seizures. J Neurochem 82:192–201

    Article  CAS  PubMed  Google Scholar 

  106. Garrido YCS, Sanabria ERG, Funke MG, Cavalheiro EA, Naffah-Mazzacoratti MG (1998) MAP kinase is increased in the limbic structures of the rat brain during the early stages of status epilepticus. Brain Res Bull 47:223–229

    Article  CAS  PubMed  Google Scholar 

  107. Kim YS, Hong KS, Seong YS et al (1994) Phosphorylation and activation of MAP kinase by kainic acid-induced seizure in rat hippocampus. Biochem Biophys Res Commun 202:1163–1168

    Article  CAS  PubMed  Google Scholar 

  108. Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ (2006) BDNF-induced synthesis of Egr3 controls the levels of GABAA receptor α4 subunits in hippocampal neurons. J Biol Chem 281:29431–29435

    Article  CAS  PubMed  Google Scholar 

  109. Harney SC, Frenguelli BG, Lambert JJ (2003) Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurones. Neuropharmacology 45:873–883

    Article  CAS  PubMed  Google Scholar 

  110. Kia A, Ribeiro F, Nelson R, Gavrilovici C, Ferguson SSG, Poulter MO (2011) Kindling alters neurosteroid-induced modulation of phasic and tonic GABAA receptor-mediated currents: role of phosphorylation. J Neurochem 116:1043–1056

    Article  CAS  PubMed  Google Scholar 

  111. Abramian AM, Comenencia-Ortiz E, Modgil A et al (2014) Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors. Proc Natl Acad Sci U S A 111:7132–7137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Joshi S, Kapur J (2009) Slow intracellular accumulation of GABAA receptor δ subunit is modulated by BDNF. Neuroscience 164:507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Joshi S, Keith KJ, Ilyas A, Kapur J (2013) GABAA receptor membrane insertion rates are specified by their subunit composition. Mol Cell Neurosci 56:201–211

    Article  CAS  PubMed  Google Scholar 

  114. Frye CA (2008) Hormonal influences on seizures: basic neurobiology. Chapter 3. In: Gidal BE, Harden CL (eds) International review of neurobiology epilepsy in women the scientific basis for clinical management, vol 83. Academic, Boston, pp 27–77

    Chapter  Google Scholar 

  115. Reddy DS (2013) Neuroendocrine aspects of catamenial epilepsy. Horm Behav 63:254–266

    Article  CAS  PubMed  Google Scholar 

  116. TaubØll E, Sveberg L, Svalheim S (2015) Interactions between hormones and epilepsy. Seizure 28:3–11

    Article  PubMed  Google Scholar 

  117. Joshi S, Rajasekaran K, Kapur J (2013) GABAergic transmission in temporal lobe epilepsy: the role of neurosteroids. Exp Neurol 244:36–42

    Article  CAS  PubMed  Google Scholar 

  118. Kokate TG, Banks MK, Magee T, Yamaguchi S, Rogawski MA (1999) Finasteride, a 5alpha-reductase inhibitor, blocks the anticonvulsant activity of progesterone in mice. J Pharmacol Exp Ther 288:679–684

    CAS  PubMed  Google Scholar 

  119. Frye C, Rhodes M, Walf A, Harney J (2002) Progesterone reduces pentylenetetrazol-induced ictal activity of wild-type mice but not those deficient in type I 5α-reductase. Epilepsia 43:14–17

    Article  CAS  PubMed  Google Scholar 

  120. Kokate TG, Cohen AL, Karp E, Rogawski MA (1996) Neuroactive steroids protect against pilocarpine- and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharmacology 35:1049–1056

    Article  CAS  PubMed  Google Scholar 

  121. Kaminski RM, Marini H, Kim WJ, Rogawski MA (2005) Anticonvulsant activity of androsterone and etiocholanolone. Epilepsia 46:819–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Belelli D, Bolger MB, Gee KW (1989) Anticonvulsant profile of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Eur J Pharmacol 166:325–329

    Article  CAS  PubMed  Google Scholar 

  123. Reddy DS (2004) Testosterone modulation of seizure susceptibility is mediated by neurosteroids 3α-androstanediol and 17β-estradiol. Neuroscience 129:195–207

    Article  CAS  PubMed  Google Scholar 

  124. Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABAA receptor function and seizure susceptibility. J Neurosci 22:3795–3805

    CAS  PubMed  Google Scholar 

  125. Frye CA (1995) The neurosteroid 3α, 5α-THP has antiseizure and possible neuroprotective effects in an animal model of epilepsy. Brain Res 696:113–120

    Article  CAS  PubMed  Google Scholar 

  126. Frye CA, Bayon LE (1999) Prenatal stress reduces the effectiveness of the neurosteroid 3α,5α-THP to block kainic-acid-induced seizures. Dev Psychobiol 34:227–234

    Article  CAS  PubMed  Google Scholar 

  127. Rogawski MA, Loya CM, Reddy K, Zolkowska D, Lossin C (2013) Neuroactive steroids for the treatment of status epilepticus. Epilepsia 54:93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Carter RB, Wood PL, Wieland S et al (1997) Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3α-hydroxy-3α-methyl-5α-pregnan-20-one), a selective, high-affinity, steroid modulator of the GABAA receptor. J Pharmacol Exp Ther 280:1284–1295

    CAS  PubMed  Google Scholar 

  129. Holmes GL, Weber DA (1984) The effect of progesterone on kindling: a developmental study. Brain Res 318:45–53

    Article  CAS  PubMed  Google Scholar 

  130. Reddy DS, Gangisetty O, Briyal S (2010) Disease-modifying activity of progesterone in the hippocampus kindling model of epileptogenesis. Neuropharmacology 59:573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Edwards HE, Mo V, Burnham WM, Maclusky NJ (2001) Gonadectomy unmasks an inhibitory effect of progesterone on amygdala kindling in male rats. Brain Res 889:260–263

    Article  CAS  PubMed  Google Scholar 

  132. Reddy DS, Ramanathan G (2012) Finasteride inhibits the disease-modifying activity of progesterone in the hippocampus kindling model of epileptogenesis. Epilepsy Behav 25:92–97

    Article  PubMed Central  Google Scholar 

  133. Laxer K, Blum D, Abou-Khalil BW et al (2000) Assessment of ganaxolone’s anticonvulsant activity using a randomized, double-blind, presurgical trial design. Epilepsia 41:1187–1194

    Article  CAS  PubMed  Google Scholar 

  134. Kerrigan JF, Shields WD, Nelson TY et al (2000) Ganaxolone for treating intractable infantile spasms: a multicenter, open-label, add-on trial. Epilepsy Res 42:133–139

    Article  CAS  PubMed  Google Scholar 

  135. Pieribone VA, Tsai J, Soufflet C et al (2007) Clinical evaluation of ganaxolone in pediatric and adolescent patients with refractory epilepsy. Epilepsia 48:1870–1874

    Article  CAS  PubMed  Google Scholar 

  136. Reddy DS, Rogawski MA (2009) Neurosteroid replacement therapy for catamenial epilepsy. Neurotherapeutics 6:392–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bazan AC, Montenegro MA, Cendes F, Min LL, Guerreiro CA (2005) Menstrual cycle worsening of epileptic seizures in women with symptomatic focal epilepsy. Arq Neuropsiquiatr 63:751–756

    Article  PubMed  Google Scholar 

  138. Herzog AG, Harden CL, Liporace J et al (2004) Frequency of catamenial seizure exacerbation in women with localization-related epilepsy. Ann Neurol 56:431–434

    Article  PubMed  Google Scholar 

  139. Duncan S, Read CL, Brodie MJ (1993) How common is catamenial epilepsy? Epilepsia 34:827–831

    Article  CAS  PubMed  Google Scholar 

  140. Herzog AG, Klein P, Ransil BJ (1997) Three patterns of catamenial epilepsy. Epilepsia 38:1082–1088

    Article  CAS  PubMed  Google Scholar 

  141. Herzog AG (2008) Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure 17:151–159

    Article  PubMed  Google Scholar 

  142. TaubØll E, Lundervold A, Gjerstad L (1991) Temporal distribution of seizures in epilepsy. Epilepsy Res 8:153–165

    Article  PubMed  Google Scholar 

  143. El-Khayat HA, Soliman NA, Tomoum HY, Omran MA, El-Wakad AS, Shatla RH (2008) Reproductive hormonal changes and catamenial pattern in adolescent females with epilepsy. Epilepsia 49:1619–1626

    Article  PubMed  Google Scholar 

  144. Veliskova J, DeSantis KA (2013) Sex and hormonal influences on seizures and epilepsy. Horm Behav 63:267–277

    Article  CAS  PubMed  Google Scholar 

  145. Veliskova J (2006) The role of estrogens in seizures and epilepsy: the bad guys or the good guys? Neuroscience 138:837–844

    Article  CAS  PubMed  Google Scholar 

  146. Veliskova J (2007) Estrogens and epilepsy: why are we so excited? Neuroscientist 13:77–88

    Article  CAS  PubMed  Google Scholar 

  147. Harden CL, Pulver MC, Ravdin L, Jacobs AR (1999) The effect of menopause and perimenopause on the course of epilepsy. Epilepsia 40:1402–1407

    Article  CAS  PubMed  Google Scholar 

  148. Klein P, van Passel-Clark LM, Pezzullo JC (2003) Onset of epilepsy at the time of menarche. Neurology 60:495–497

    Article  PubMed  Google Scholar 

  149. Rosciszewska D (1975) The course of epilepsy in girls at the age of puberty. Neurol Neurochir Pol 9:597–602

    CAS  PubMed  Google Scholar 

  150. Wheless JW, Kim HL (2002) Adolescent seizures and epilepsy syndromes. Epilepsia 43(S3):33–52

    Article  PubMed  Google Scholar 

  151. Bäckströrm T (1976) Epileptic seizures in women related to plasma estrogen and progesterone during the menstrual cycle. Acta Neurol Scand 54:321–347

    Article  Google Scholar 

  152. Bäckströrm T, Zetterlund B, Blom S, Romano M (1984) Effects of intravenous progesterone infusions on the epileptic discharge frequency in women with partial epilepsy. Acta Neurol Scand 69:240–248

    Article  Google Scholar 

  153. Frye CA, Bayon LE (1999) Cyclic withdrawal from endogenous and exogenous progesterone increases kainic acid and perforant pathway induced seizures. Pharmacol Biochem Behav 62:315–321

    Article  CAS  PubMed  Google Scholar 

  154. Reddy DS, Kim HY, Rogawski MA (2001) Neurosteroid withdrawal model of perimenstrual catamenial epilepsy. Epilepsia 42:328–336

    Article  CAS  PubMed  Google Scholar 

  155. Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Reddy DS (2009) The role of neurosteroids in the pathophysiology and treatment of catamenial epilepsy. Epilepsy Res 85:1–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Reddy DS, Gould J, Gangisetty O (2012) A mouse kindling model of perimenstrual catamenial epilepsy. J Pharmacol Exp Ther 341:784–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lawrence C, Martin BS, Sun C, Williamson J, Kapur J (2010) Endogenous neurosteroid synthesis modulates seizure frequency. Ann Neurol 67:689–693

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Herzog AG, Frye CA (2003) Seizure exacerbation associated with inhibition of progesterone metabolism. Ann Neurol 53:390–391

    Article  CAS  PubMed  Google Scholar 

  160. Herzog AG (1986) Intermittent progesterone therapy and frequency of complex partial seizures in women with menstrual disorders. Neurology 36:1607–1610

    Article  CAS  PubMed  Google Scholar 

  161. Herzog AG (1992) Progesterone therapy in women with epilepsy: a 3-year follow-up. Neurology 52:1917–1918

    Article  Google Scholar 

  162. Herzog AG, Frye CA (2014) Allopregnanolone levels and seizure frequency in progesterone-treated women with epilepsy. Neurology 83:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Herzog AG (2015) Catamenial epilepsy: update on prevalence, pathophysiology and treatment from the findings of the NIH Progesterone Treatment Trial. Seizure 28:18–25

    Article  PubMed  Google Scholar 

  164. Brinton RD, Thompson RF, Foy MR et al (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29:313–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Frye CA (2010) Effects and mechanisms of progestogens and androgens in ictal activity. Epilepsia 51:135–140

    Article  CAS  PubMed  Google Scholar 

  166. Rhodes ME, Harney JP, Frye CA (2004) Gonadal, adrenal, and neuroactive steroids’ role in ictal activity. Brain Res 1000:8–18

    Article  CAS  PubMed  Google Scholar 

  167. Frye CA, Rhodes ME, Walf AA, Harney JP (2001) Testosterone reduces pentylenetetrazole-induced ictal activity of wildtype mice but not those deficient in type I 5α-reductase. Brain Res 918:182–186

    Article  CAS  PubMed  Google Scholar 

  168. Tan M, Tan U (2001) Effects of testosterone and clomiphene on spectral EEG and visual evoked response in a young man with posttraumatic epilepsy. Int J Neurosci 106:87–94

    Article  CAS  PubMed  Google Scholar 

  169. Dudek FE, Sutula TP (2007) Epileptogenesis in the dentate gyrus: a critical perspective. In: Helen E. Scharfman. Progress in Brain Research. The dentate gyrus: a comprehensive guide to structure, function, and clinical implications, vol 163. Elsevier. p 755

    Google Scholar 

  170. Dudek FE, Staley KJ (2011) The time course of acquired epilepsy: Implications for therapeutic intervention to suppress epileptogenesis. Neurosci Lett 497:240–246

    Article  CAS  PubMed  Google Scholar 

  171. Pitkänen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10:173–186

    Article  PubMed  Google Scholar 

  172. Biagini G, Longo D, Baldelli E et al (2009) Neurosteroids and epileptogenesis in the pilocarpine model: evidence for a relationship between P450scc induction and length of the latent period. Epilepsia 50(S1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Biagini G, Panuccio G, Avoli M (2010) Neurosteroids and epilepsy. Curr Opin Neurol 23:170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Biagini G, Baldelli E, Longo D et al (2006) Endogenous neurosteroids modulate epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol 201:519–524

    Article  CAS  PubMed  Google Scholar 

  175. Barbaccia ML, Roscetti G, Trabucchi M et al (1996) Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology 63:166–172

    Article  CAS  PubMed  Google Scholar 

  176. Sáínchez P, Torres JM, Gavete P, Ortega E (2008) Effects of swim stress on mRNA and protein levels of steroid 5α-reductase isozymes in prefrontal cortex of adult male rats. Neurochem Int 52:426–431

    Article  CAS  Google Scholar 

  177. Verleye M, Heulard I, Gillardin JM (2008) Investigation of the anticonvulsive effect of acute immobilization stress in anxious Balb/cByJ mice using GABAA-related mechanistic probes. Psychopharmacology (Berl) 197:523–534

    Article  CAS  Google Scholar 

  178. Peričić D, Švob D, Jazvinŝćak M, Mirković K (2000) Anticonvulsive effect of swim stress in mice. Pharmacol Biochem Behav 66:879–886

    Article  PubMed  Google Scholar 

  179. Abel EL, Berman RF (1993) Effects of water immersion stress on convulsions induced by pentylenetetrazol. Pharmacol Biochem Behav 45:823–825

    Article  CAS  PubMed  Google Scholar 

  180. Hirst JJ, Yawno T, Nguyen P, Walker DW (2006) Stress in pregnancy activates neurosteroid production in the fetal brain. Neuroendocrinology 84:264–274

    Article  CAS  PubMed  Google Scholar 

  181. Kumar G, Jones NC, Morris MJ, Rees S, O’Brien TJ, Salzberg MR (2011) Early life stress enhancement of limbic epileptogenesis in adult rats: mechanisticinsights. PLoS One 6:e24033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Desgent S, Duss S, Sanon NT et al (2012) Early-life stress is associated with gender-based vulnerability to epileptogenesis in rat pups. PLoS One 7:e42622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Joëls M (2009) Stress, the hippocampus, and epilepsy. Epilepsia 50:586–597

    Article  PubMed  Google Scholar 

  184. Sperling MR, Schilling C, Glosser D, Tracy JI, Asadi-Pooya AA (2008) Self-perception of seizure precipitants and their relation to anxiety level, depression, and health locus of control in epilepsy. Seizure 17:302–307

    Article  PubMed  Google Scholar 

  185. Temkin NR, Davis GR (1984) Stress as a risk factor for seizures among adults with epilepsy. Epilepsia 25:450–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep Kapur M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Joshi, S., Kapur, J. (2016). Neurosteroid Regulation of Seizures: Role of GABAA Receptor Plasticity. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics