Skip to main content

The Importance of Drug Repurposing in the Field of Antiepileptic Drug Development

  • Protocol
  • First Online:
Antiepileptic Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Drug repurposing involves finding new therapeutic uses for existing drugs, including marketed, discontinued, shelved, and investigational drugs. The advantages of this strategy are many: reduced drug development timeline, best chances of surviving Phase II and Phase III clinical trials, simplified dosage form development, and, of course, added value to drugs belonging to a company or laboratory portfolio. The relatively high number of antiepileptic drugs which have been successfully repurposed and the fact that many drugs from other categories have proven anticonvulsant effects at the preclinical and even clinical level suggest that this strategy should be widely exploited in the antiepileptic drug discovery field. Here, we present an overview of the current approaches to drug repurposing, along with practical considerations to face a drug repurposing campaign to find new treatments for epilepsy and novel therapeutic uses for antiepileptic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrowsmith J, Harrison R (2012) Drug repositioning: the business case and current strategies to repurpose shelved candidates and marketed drugs. In: Barrat MJ, Frail DE (eds) Drug repositioning: bringing new life to shelved assets and existing drugs. Wiley, New Jersey

    Google Scholar 

  2. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  PubMed  Google Scholar 

  3. Aubé J (2012) Drug repurposing and the medicinal chemist. ACS Med Chem Lett 3:442–444

    Article  PubMed  PubMed Central  Google Scholar 

  4. Spina E, Preugi G (2004) Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 6:57–75

    PubMed  Google Scholar 

  5. Rogawski MA, Löscher W (2004) The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10:685–692

    Article  CAS  PubMed  Google Scholar 

  6. Ettinger AB, Argoff CE (2007) Use of antiepileptic drugs for nonepileptic conditions: psychiatric disorders and chronic pain. Neurotherapeutics 4:75–83

    Article  CAS  PubMed  Google Scholar 

  7. Moch S (2010) Therapeutic uses of antiepileptic drugs in non-epileptic disorders. S Afr Pharm J 77:18–27

    Google Scholar 

  8. Bialer M (2012) Why are antiepileptic drugs used for nonepileptic conditions? Epilepsia 53(Suppl 7):26–33

    Article  CAS  PubMed  Google Scholar 

  9. Kim TW (2015) Drug repositioning approaches for the discovery of new therapeutics for Alzheimer’s disease. Neurotherapeutics 12:132–142

    Article  CAS  PubMed  Google Scholar 

  10. Bellera CL, Di Ianni ME, Sbaraglini ML (2014) Knowledge-based drug repurposing: a rational approach towards the identification of novel medical applications of known drugs. In: Ul-Haq Z, Madura JD (eds) Frontiers in computational chemistry, vol 1. Sharjah, Bentham

    Google Scholar 

  11. Piñero J, Queralt-Rosinach N, Bravo A et al (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015: bay028

    Google Scholar 

  12. Davis AP, Murphy CG, Johnson R et al (2013) The comparative toxicogenomics database: update 2013. Nucleic Acids Res 41:D1104–D1114

    Article  CAS  PubMed  Google Scholar 

  13. Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 41:D514–D517

    Google Scholar 

  14. Gutiérrez-SAcristán A, Grosdidier S, Valverde O et al (2015) PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics 31:3075–3077

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pearson WR (2013) An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics 42:3.1.1–3.1.8

    Google Scholar 

  16. Gibrat JF, Madej T, Bryant SH (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 6:377–385

    Article  CAS  PubMed  Google Scholar 

  17. Madej T, Lanczycki CJ, Zhang D et al (2014) MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acid Res 42:D297–D303

    Article  CAS  PubMed  Google Scholar 

  18. Haupt VJ, Daminelli S, Schroeder M (2013) Drug promiscuity in PDB: protein binding site similarity is key. PLoS One 8:e65894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Konc J, Janežič D (2014) Binding site comparison for function prediction and pharmaceutical discovery. Curr Opin Struct Biol 25:34–39

    Article  CAS  PubMed  Google Scholar 

  20. Qu XA, Rajpal DK (2012) Applications of Connectivity Map in drug discovery and development. Drug Discov Today 17:1289–1298

    Article  CAS  PubMed  Google Scholar 

  21. Zhuo W, Zhang L, Zhu Y et al (2015) Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study. Am J Cancer Res 5:2202–2211

    PubMed  PubMed Central  Google Scholar 

  22. Dudley JT, Sirota M, Shenoy M et al (2011) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 3:96ra76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Talevi A, Bruno-Blanch LE (2011) Virtual screening: an emergent, key methodology for drug development in an emergent continent. A bridge towards patentability. In: Castro EA, Haghi AK (eds) Advanced methods and applications in chemoinformatics. Research progress and new applications. Hershey, IGI Global

    Google Scholar 

  24. Drwal MN, Griffith R (2013) Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol 10:e395–e401

    Article  PubMed  Google Scholar 

  25. Talevi A, Gavernet L, Bruno-Blanch LE (2009) Combined virtual screening strategies. Curr Comput Aided Drug Des 5:22–37

    Article  Google Scholar 

  26. Law V, Knox C, Dioumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acid Res 42:D1091–D1097

    Article  CAS  PubMed  Google Scholar 

  27. Novick PA, Ortiz OF, Poelman J et al (2013) SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery. PLoS One 8:e79568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Talevi A (2016) The importance of bioactivation in computer-guided drug repositioning. Why the parent drug is not always enough. Curr Top Med Chem 16: 2078–2087

    Google Scholar 

  29. Oprea TI, Overington JP (2015) Computational and practical aspects of drug repositioning. Assay Drug Dev Technol 13:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zawilska JB, Wojcieszak J, Olejniczak AB (2013) Prodrugs: a challenge for the drug development. Pharmacol Rep 65:1–14

    Article  CAS  PubMed  Google Scholar 

  31. Wu L, Ai N, Liu Y et al (2013) Relating anatomical therapeutic indications by the ensemble similarity of drug sets. J Chem Inf Model 53:2154–2160

    Article  CAS  PubMed  Google Scholar 

  32. Keiser KL, Roth LB, Armbruster BN et al (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    Article  CAS  PubMed  Google Scholar 

  33. Keiser MJ, Irwin JJ, Laggner C et al (2009) Predicting new molecular targets for known drugs. Nature 462:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu R, Singh N, Tawa GJ et al (2014) Exploiting large-scale drug-protein interaction information for computational drug repurposing. BMC Bioinformatics 15:210

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheng F, Liu C, Jiang J et al (2012) Prediction of drug-target Interactions and drug repositioning via network-based Inference. PLoS Comput Biol 8:e1002503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen B, Ding Y, Wild DJ (2012) Assessing drug target association using semantic linked data. PLoS Comput Biol 8:e1002574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Tao C, Jianq G (2014) Network-based analysis reveals distinct association patterns in a semantic MEDLINE-based drug-disease-gene network. J Biomed Semantics 5:33

    Article  PubMed  PubMed Central  Google Scholar 

  38. Talevi A, Enrique AE, Bruno-Blanch LE (2012) Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors. Bioorg Med Chem Lett 22:4072–4074

    Article  CAS  PubMed  Google Scholar 

  39. Di Ianni ME, Enrique AV, Del Valle ME et al (2015) Is there a relationship between sweet taste and seizures? Anticonvulsant and proconvulsant effects of non-nutritive sweeteners. Comb Chem High Throughput Screen 18:335–345

    Article  PubMed  Google Scholar 

  40. Villalba ML, Palestro P, Ceruso M et al (2016) Sulfamide derivatives with selective carbonic anhydrase VII inhibitory action. Bioorg Med Chem 24:894–901

    Article  CAS  PubMed  Google Scholar 

  41. Food and Drug Administration Center for Drug Evaluation and Research (2005) Guidance for industry estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers

    Google Scholar 

  42. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  43. Sharma V, McNeill JH (2009) To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol 157:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu X, Vilenski O, Kwan J et al (2009) Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metab Dipos 37:1548–1556

    Article  CAS  Google Scholar 

  45. Watson J, Wright S, Lucas A (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37:753–760

    Article  CAS  PubMed  Google Scholar 

  46. Bellera CL, Balcazar DE, Vanrell MC et al (2015) Computer-guided drug repurposing: identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur J Med Chem 93:338–348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author work is supported by Agencia de Promoción Científica y Tecnológica (PICT 2013-3175), CONICET and Universidad Nacional de La Plata (Incentivos UNLP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Talevi, A. (2016). The Importance of Drug Repurposing in the Field of Antiepileptic Drug Development. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics