Skip to main content

The Blood–Brain Barrier and the Design of New Antiepileptic Drugs

  • Protocol
  • First Online:
Antiepileptic Drug Discovery

Abstract

The vertebrate’s brain is vascularized during its development to provide oxygen and essential nutrients to newly born neurons. This brain vasculature is anatomically distinct from that of other organs. It comprises, in addition to endothelial cells, pericytes and astrocytes, which collectively form the neurovascular unit, structure that underlies the blood–brain barrier and regulates blood flow to match brain activity. The main features of the vertebrate blood–brain barrier are closed cell–cell junctions, a low rate of transcytosis, and the expression of various adenosine triphosphate-binding cassette transporters. The blood–brain barrier function is impaired in several neurological diseases including epilepsy. This chapter will provide a brief overview on the regulation of blood–brain barrier properties by the neurovascular unit and the relation between blood–brain barrier, seizures, and epilepsy. We will also summarize new therapies that aim to control seizure activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221. doi:10.1002/glia.20543

    Article  PubMed  Google Scholar 

  2. Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol 203:47–59. doi:10.1111/j.1748-1716.2011.02256.x

    Article  CAS  Google Scholar 

  3. Muoio V, Persson PB, Sendeski MM (2014) The neurovascular unit - concept review. Acta Physiol 210:790–798. doi:10.1111/apha.12250

    Article  CAS  Google Scholar 

  4. Kim KJ, Filosa JA (2012) Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation. J Physiol 590:1757–1770. doi:10.1113/jphysiol.2011.222778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harder DR, Zhang C, Gebremedhin D (2002) Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci 17:27–31

    CAS  PubMed  Google Scholar 

  6. Ribatti D, Nico B, Crivellato E, Artico M (2006) Development of the blood-brain barrier: a historical point of view. Anat Rec B New Anat 289:3–8. doi:10.1002/ar.b.20087

    Article  PubMed  Google Scholar 

  7. Liddelow SA (2011) Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS 8:2. doi:10.1186/2045-8118-8-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schoknecht K, David Y, Heinemann U (2015) The blood–brain barrier—gatekeeper to neuronal homeostasis: clinical implications in the setting of stroke. Semin Cell Dev Biol 38:35–42. doi:10.1016/j.semcdb.2014.10.004

    Article  PubMed  Google Scholar 

  9. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    CAS  PubMed  Google Scholar 

  10. Abbott NJ, Friedman A (2012) Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 53(Suppl 6):1–6. doi:10.1111/j.1528-1167.2012.03696.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kowiański P, Lietzau G, Steliga A, Waśkow M, Moryś J (2013) The astrocytic contribution to neurovascular coupling--still more questions than answers? Neurosci Res 75:171–183. doi:10.1016/j.neures.2013.01.014

    Article  PubMed  CAS  Google Scholar 

  12. Ruhrberg C, Bautch VL (2013) Neurovascular development and links to disease. Cell Mol Life Sci 70:1675–1684. doi:10.1007/s00018-013-1277-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Emanueli C, Schratzberger P, Kirchmair R, Madeddu P (2003) Paracrine control of vascularization and neurogenesis by neurotrophins. Br J Pharmacol 140:614–619. doi:10.1038/sj.bjp.0705458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duchemin S, Boily M, Sadekova N, Girouard H (2012) The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits 6:1–19. doi:10.3389/fncir.2012.00051

    Article  CAS  Google Scholar 

  15. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511. doi:10.1007/s00281-009-0177-0

    Article  PubMed  Google Scholar 

  16. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638. doi:10.1046/j.1469-7580.2002.00064.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sá-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45:327–347. doi:10.1007/s12035-012-8244-2

    Article  PubMed  CAS  Google Scholar 

  18. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561. doi:10.1038/nature09522

    Article  CAS  PubMed  Google Scholar 

  19. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243. doi:10.1038/nature09613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    CAS  PubMed  Google Scholar 

  21. Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169:1–11

    Article  CAS  PubMed  Google Scholar 

  22. Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P (2011) The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 8:8. doi:10.1186/2045-8118-8-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405. doi:10.1038/nn.2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G (2001) Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30:35–44

    Article  CAS  PubMed  Google Scholar 

  25. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1:223–236. doi:10.1007/s11481-006-9025-3

    Article  PubMed  Google Scholar 

  26. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335:75–96. doi:10.1007/s00441-008-0658-9

    Article  PubMed  Google Scholar 

  27. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. doi:10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  28. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. doi:10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  29. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778. doi:10.1126/science.1190928

    Article  CAS  PubMed  Google Scholar 

  30. Salmina AB (2009) Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis 16:485–502. doi:10.3233/JAD-2009-0988

    CAS  PubMed  Google Scholar 

  31. Bechmann I, Priller J, Kovac A, Böntert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14:1651–1658

    Article  CAS  PubMed  Google Scholar 

  32. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235. doi:10.1038/nn.2923

    Article  CAS  PubMed  Google Scholar 

  33. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635. doi:10.1038/nri3265

    Article  CAS  PubMed  Google Scholar 

  34. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. doi:10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100:307–317. doi:10.1152/japplphysiol.00938.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Figley CR, Stroman PW (2011) The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33:577–588. doi:10.1111/j.1460-9568.2010.07584.x

    Article  PubMed  Google Scholar 

  37. Pelligrino DA, Vetri F, Xu HL (2011) Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 22:229–236. doi:10.1016/j.semcdb.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi YK, Kim KW (2008) Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep 41:345–352

    Article  CAS  PubMed  Google Scholar 

  39. Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 53:637–644

    Article  CAS  PubMed  Google Scholar 

  40. Carvey PM, Hendey B, Monahan AJ (2009) The blood brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem 111:291–314. doi:10.1111/j.1471-4159.2009.06319.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yurchenco PD, Patton BL (2009) Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des 15:1277–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. LeBleu VS, Macdonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med (Maywood) 232:1121–1129. doi:10.3181/0703-MR-72

    Article  CAS  Google Scholar 

  43. Zovein AC, Luque A, Turlo KA, Hofmann JJ, Yee KM, Becker MS, Fassler R, Mellman I, Lane TF, Iruela-Arispe ML (2010) Beta 1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18:39–51. doi:10.1016/j.devcel.2009.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greenstein B, Greenstein A (2000) Color atlas of neuroscience: neuroanatomy and neurophysiology. Thieme, New York, NY

    Google Scholar 

  45. Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221. doi:10.1016/j.devcel.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  46. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  47. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25. doi:10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  48. Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449. doi:10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  49. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901. doi:10.1152/physrev.00035.2003

    Article  CAS  PubMed  Google Scholar 

  50. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934. doi:10.1038/ncb1752

    Article  CAS  PubMed  Google Scholar 

  51. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  52. Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A, Wang Y, Yang X (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 20:291–302. doi:10.1016/j.devcel.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  53. Deane R, Zlokovic BV (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 4:191–197

    Article  CAS  PubMed  Google Scholar 

  54. Vorbrodt AW (1988) Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem 18:1–99

    Article  CAS  PubMed  Google Scholar 

  55. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC (2013) The blood-brain barrier: an engineering perspective. Front Neuroeng 6:1–22. doi:10.3389/fneng.2013.00007

    Article  CAS  Google Scholar 

  56. Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 31:246–254. doi:10.1016/j.tips.2010.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602. doi:10.1038/nrn1728

    Article  PubMed  CAS  Google Scholar 

  58. Potschka H (2010) Targeting regulation of ABC efflux transporters in brain diseases: a novel therapeutic approach. Pharmacol Ther 125:118–127. doi:10.1016/j.pharmthera.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  59. Hervé F, Ghinea N, Scherrmann JM (2008) CNS delivery via adsorptive transcytosis. AAPS J 10:455–472. doi:10.1208/s12248-008-9055-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nag S, Begley DJ (2005) Blood brain barrier, exchange of metabolites and gases. In: Kalimo H (ed) Pathology and genetics: cerebrovascular diseases. ISN Neuropath Press, Basel, pp 22–29

    Google Scholar 

  61. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61. doi:10.1016/j.drudis.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  62. Sauer I, Dunay IR, Weisgraber K, Bienert M, Dathe M (2005) An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry 44:2021–2029. doi:10.1021/bi048080x

    Article  CAS  PubMed  Google Scholar 

  63. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M (2007) Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956. doi:10.1093/brain/awm118

    Article  PubMed  Google Scholar 

  64. van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E, Gorter JA (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521–534. doi:10.1093/brain/awl318

    Article  PubMed  Google Scholar 

  65. van Vliet EA, Aronica E, Gorter JA (2014) Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 277:455–473. doi:10.1016/j.neuroscience.2014.07.030

    Article  PubMed  CAS  Google Scholar 

  66. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160. doi:10.1016/j.nbd.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  67. Ndode-Ekane XE, Hayward N, Gröhn O, Pitkänen A (2010) Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy. Neuroscience 166:312–332. doi:10.1016/j.neuroscience.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  68. Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A (2005) Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome. J Clin Neurophysiol 22:1–9

    Article  PubMed  Google Scholar 

  69. Tomkins O, Shelef I, Kaizerman I, Eliushin A, Afawi Z, Misk A, Gidon M, Cohen A, Zumsteg D, Friedman A (2008) Blood-brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 79:774–777. doi:10.1136/jnnp.2007.126425

    Article  CAS  PubMed  Google Scholar 

  70. Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I (2011) Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol 2011:765923. doi:10.1155/2011/765923

    Article  PubMed  PubMed Central  Google Scholar 

  71. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A (2004) Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24:7829–7836

    Article  CAS  PubMed  Google Scholar 

  72. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A (2007) TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535–547. doi:10.1093/brain/awl317

    Article  PubMed  Google Scholar 

  73. Marchi N, Johnson AJ, Puvenna V, Johnson HL, Tierney W, Ghosh C, Cucullo L, Fabene PF, Janigro D (2011) Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia 52:1627–1634. doi:10.1111/j.1528-1167.2011.03080.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31:4037–4050. doi:10.1523/JNEUROSCI.6210-10.2011

    Article  CAS  PubMed  Google Scholar 

  75. Braganza O, Bedner P, Hüttmann K, Von Staden E, Friedman A, Seifert G, Steinhäuser C (2012) Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling. Epilepsia 53:1898–1906. doi:10.1111/j.1528-1167.2012.03665.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frigerio F, Frasca A, Weissberg I, Parrella S, Friedman A, Vezzani A, Noé FM (2012) Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia 53:1887–1897. doi:10.1111/j.1528-1167.2012.03666.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Michalak Z, Sano T, Engel T, Miller-Delaney SF, Lerner-Natoli M, Henshall DC (2013) Spatio-temporally restricted blood-brain barrier disruption after intra-amygdala kainic acid-induced status epilepticus in mice. Epilepsy Res 103:167–179. doi:10.1016/j.eplepsyres.2012.10.006

    Article  PubMed  Google Scholar 

  78. Tabernero A, Granda B, Medina A, Sánchez-Abarca LI, Lavado E, Medina JM (2002) Albumin promotes neuronal survival by increasing the synthesis and release of glutamate. J Neurochem 81:881–891

    Article  CAS  PubMed  Google Scholar 

  79. Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A, Kaufer D (2009) Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 29:8927–8935. doi:10.1523/JNEUROSCI.0430-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Relay Ranaivo H, Wainwright MS (2010) Albumin activates astrocytes and microglia through mitogen- activated protein kinase pathways. Brain Res 1313:222–231. doi:10.1016/j.brainres.2009.11.063

    Article  CAS  Google Scholar 

  81. Yu B, Shinnick-Gallagher P (1994) Interleukin-1 beta inhibits synaptic transmission and induces membrane hyperpolarization in amygdala neurons. J Pharmacol Exp Ther 271:590–600

    CAS  PubMed  Google Scholar 

  82. Weissberg I, Reichert A, Heinemann U, Friedman A (2011) Blood-brain barrier dysfunction in epileptogenesis of the temporal lobe. Epilepsy Res Treat 2011:1–10. doi:10.1155/2011/143908

    Article  Google Scholar 

  83. Librizzi L, Noè F, Vezzani A, De Curtis M, Ravizza T (2012) Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol 72:82–90. doi:10.1002/ana.23567

    Article  PubMed  Google Scholar 

  84. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21. doi:10.1016/j.expneurol.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  85. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, Hesdorffer DC, Hauser WA, Kazis L, Kobau R, Kroner B, Labiner D, Liow K, Logroscino G, Medina MT, Newton CR, Parko K, Paschal A, Preux PM, Sander JW, Selassie A, Theodore W, Tomson T, Wiebe S (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52:2–26. doi:10.1111/j.1528-1167.2011.03121.x

    Article  CAS  PubMed  Google Scholar 

  86. Mohanraj R, Brodie MJ (2005) Outcomes in newly diagnosed localization-related epilepsies. Seizure 14:318–323. doi:10.1016/j.seizure.2005.04.002

    Article  PubMed  Google Scholar 

  87. Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429. doi:10.1016/j.tips.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  88. Löscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76. doi:10.1016/j.pneurobio.2005.04.006

    Article  PubMed  CAS  Google Scholar 

  89. Potschka H, Löscher W (2001) In vivo evidence for P-glycoprotein – mediated transport of phenytoin at the blood – brain barrier of rats. Epilepsia 42:1231–1240

    Article  CAS  PubMed  Google Scholar 

  90. Potschka H, Fedrowitz M, Löscher W (2002) P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett 327:173–176

    Article  CAS  PubMed  Google Scholar 

  91. van Vliet E, van Schaik R, Edelbroek PM, Voskuyl RA, Redeker S, Aronica E, Wadman WJ, Gorter JA (2007) Region-specific overexpression of P-glycoprotein at the blood-brain barrier affects brain uptake of phenytoin in epileptic rats. J Pharmacol Exp Ther 322:141–147. doi:10.1124/jpet.107.121178

    Article  PubMed  CAS  Google Scholar 

  92. Iannetti P, Spalice A, Parisi P (2005) Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 46:967–969. doi:10.1111/j.1528-1167.2005.59204.x

    Article  PubMed  Google Scholar 

  93. Iannetti P, Parisi P, Spalice A, Ruggieri M, Zara F (2009) Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res 85:89–95. doi:10.1016/j.eplepsyres.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  94. Luna-Munguia H, Salvamoser JD, Pascher B, Pieper T, Getzinger T, Kudernatsch M, Kluger G, Potschka H (2015) Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries. J Pharmacol Exp Ther 352:368–378. doi:10.1124/jpet.114.218180

    Article  PubMed  CAS  Google Scholar 

  95. Salvamoser JD, Avemary J, Luna-Munguia H, Pascher B, Getzinger T, Pieper T, Kudernatsch M, Kluger G, Potschka H (2015) Glutamate-mediated down-regulation of the multidrug-resistance protein BCRP/ABCG2 in porcine and human brain capillaries. Mol Pharm 12:2049–2060. doi:10.1021/mp500841w

    Article  CAS  PubMed  Google Scholar 

  96. Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    Article  CAS  PubMed  Google Scholar 

  97. de Boer AG, Gaillard PJ (2007) Drug targeting to the brain. Annu Rev Pharmacol Toxicol 47:323–355

    Article  PubMed  CAS  Google Scholar 

  98. Huynh GH, Deen DF, Szoka FC (2006) Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 110:236–259. doi:10.1016/j.jconrel.2005.09.053

    Article  CAS  PubMed  Google Scholar 

  99. Sawyer AJ, Piepmeier JM, Saltzman WM (2006) New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med 79:141–152

    CAS  PubMed  Google Scholar 

  100. Engel J, Pitkanen A, Loeb JA, Dudek FE, Bertram EH, Cole AJ, Moshé SL, Wiebe S, Jensen FE, Mody I, Nehlig A, Vezzani A (2013) Epilepsy biomarkers. Epilepsia 54:61–69. doi:10.1111/epi.12299

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D, Friedman A (2014) Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol 75:864–875. doi:10.1002/ana.24147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14:1377–1383. doi:10.1038/nm.1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33:171–181. doi:10.1016/j.nbd.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  104. Zeng LH, Rensing NR, Wong M (2009) The mammalian target of rapamycin (mTOR) signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 29:6964–6972. doi:10.1523/JNEUROSCI.0066-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wong M (2010) Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia 51:27–36. doi:10.1111/j.1528-1167.2009.02341.x

    Article  CAS  PubMed  Google Scholar 

  106. van Vliet EA, Forte G, Holtman L, den Burger JC, Sinjewel A, de Vries HE, Aronica E, Gorter JA (2012) Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 53:1254–1263. doi:10.1111/j.1528-1167.2012.03513.x

    Article  PubMed  CAS  Google Scholar 

  107. Krueger DA, Wilfong AA, Holland-Bouley K, Anderson AE, Agricola K, Tudor C, Mays M, Lopez CM, Kim MO, Franz DN (2013) Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 74:679–687. doi:10.1002/ana.23960

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiram Luna-Munguia Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rogel-Salazar, G., Luna-Munguia, H. (2016). The Blood–Brain Barrier and the Design of New Antiepileptic Drugs. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics